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CHAPTER:	1	

1.1 Introduction 

Tissue engineering (TE) aims to resolve the technical difficulties associated with the 

regeneration, repair or replacement of damaged organs and tissues. A primary goal of tissue 

engineering is to fabricate a 3D construct that can promote cell-cell interaction, extra cellular 

matrix (ECM) deposition and tissue level organization (Langer and Vacanti 1993). Accomplishing 

these prerequisites with the currently available conventional scaffolds and fabrication techniques 

still remains a challenge. Some of the tissue types that have been successfully engineered include 

skin (MacNeil 2007), bone (Zhang, Venugopal et al. 2008, Jones and Yang 2011, Hammouche, 

Hammouche et al. 2012) and cartilage (Vinatier, Bouffi et al. 2009, Hammouche, Hammouche et 

al. 2012, LaPorta, Richter et al. 2012). Significant success has also been achieved in nerve 

regeneration (Cunha, Panseri et al. 2011), corneal construction (Germain, Carrier et al. 2000, 

Lawrence, Marchant et al. 2009, Paquet, Larouche et al. 2010) and vascular tissue engineering 

(Ravi and Chaikof 2010); However, the success rate has been relatively low in engineering 

complex tissue types such as liver, lung, and kidney due to their complex architectures and 

metabolic activities. 

1.2 Statement of Problem:  

In conventional preformed scaffolds, the cell viability depends on diffusion of oxygen, 

nutrients and growth factors from the surrounding host tissues, and it is limited to 100-200 microns 

thickness at cell densities comparable to that of normal tissues (Carmeliet and Jain 2000). Hence 

in constructs with larger dimensions, efficient mass transfer and subsequent cell survival can be 
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achieved only by significantly reducing cell densities or by tolerating hypoxic conditions. 

Moreover, in a porous scaffold, uniform distribution throughout the construct is difficult to 

achieve, and the seeded cells will stay on the peripheral surface of the construct forming a thin 

peripheral layer. In addition, these scaffolds cannot facilitate incorporation of multiple cell types 

in a controlled manner. Hence the slow vascularization, mass transfer limitation, low cell density 

and non-uniform cell distribution, limits conventional methods from engineering large and more 

complex organs. Therefore, an innate structure that supports functional vascularization is 

imperative for engineering large tissues grafts.  

1.3 Long Term Goal 

Many strategies have been proposed to incorporate vascular structure that includes creating 

endothelial microchannels inside scaffolds (Hahn, Taite et al. 2006, Leslie-Barbick, Moon et al. 

2009), surface modification and/or controlled releasing of pro-vasculogenic growth factor and 

cytokines (Nillesen, Geutjes et al. 2007, Chiu and Radisic 2010, Miyagi, Chiu et al. 2011), 

coculturing vascular cell types for microvessel formation (Jain 2003) etc. Despite their limited 

success, none of these approaches is able to incorporate an extensive vasculature as seen in natural 

organs. We propose to develop an advanced and efficient method for fabricating vascularized 

tissue constructs by assembling ECM based microscale modules. The long term goal of the project 

is to engineer functional tissues by establishing a technology foundation for subsequent rapid 

assembly of three-dimensional, tissue density constructs. 
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CHAPTER:	2	

2.1 Relevant background:  

Tissue Engineered Scaffolds: A TE construct consists of different combinations of various 

components broadly classified into biological components, material components and chemical 

factors. The biological component constitutes the cells that are the functional components of a 

tissue. The material component includes hydrogels and polymeric scaffolding materials like fibers, 

plastics and natural biomaterials. The material component guides various cellular functions such 

as cell growth, attachment, proliferation, differentiation etc., and it also provides the required 

mechanical stability for the construct. The chemical factors assist the biological components to 

perform the desired biological activity. Langer and Vacanti summarized the different strategies in 

engineering tissues into three broad categories (Langer and Vacanti 1993, Langer 2000) as follows: 

1. Cell substitutes: This strategy involves replacement of non-functional cells in a defective host 

with healthy cells to perform essential functions. The transplanted cells can be from the same 

host (autogeneic), from a different host of the same species (allogeneic) or from a different 

species (xenogeneic) depending on the application. Even though this strategy can avoid 

invasive surgeries, immune rejection and poor cell performance limit its potential. 

2. Materials for autologous cell colonization: This strategy involves transplantation of tissue 

growth inducing biomaterials to provide space for cell-based tissue regeneration, and 

controlled release of signaling molecules. The success of this strategy depends on the selection 

of suitable biomaterial, the development of fabrication techniques and the production of 

purified signaling molecules. 
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3. Cell Seeded scaffolds and tissue models:  This strategy involves transplantation of in-vitro 

matured tissue constructs made by seeding healthy therapeutic cells in scaffolds. The cell-

material construct can be extensively cultured in bioreactors under dynamic conditions. The 

scaffolding materials of constructs are made up of biocompatible natural materials like 

collagen, chitosan and hyaluronan and synthetic polymers like polylactic acid or polyglycolic 

acid (Hunt and Grover 2010). These tissue constructs apart from host implantation can also 

be used as extracorporeal devices. 

The above-mentioned strategies can be employed alone or in combinations to achieve specific 

goals in various applications. 

2.2 Specific Goals of Tissue Engineering:  

TE is an alternative approach for organ transplantation and has the ability to control and 

accelerate the wound healing process by combining materials and cells that can support cell 

migration, growth factors release, cell activation etc. Defective and degenerating tissues can also 

be repaired or replaced with the help of TE. The other specific goal of TE is to deliver drugs to 

specific targets; for example, hormones such as insulin/glucagon can be released in the body in a 

controlled fashion using TE scaffolds, as a potential treatment for diabetes. Temporary substitution 

for specific functions of organs like kidney and liver can be achieved using TE. This has been a 

lifesaving tool for patients waiting for organ donors. Models of tissues, organs or any systems in 

our body can be manipulated in-vitro using TE, and this has led to quick and more accurate drug 

testing and toxicity analysis. The goals of TE along with some specific examples are summarized 

in Table 1. 
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TABLE 1: Goals of Tissue Engineering 

S.NO SPECIFIC GOALS APPLICATION 

1 Organ transplant alternative Kidney, Liver, Bone, Urinary bladder 

2 Wound Healing Cornea, Skin, tendons 

3 Replacing defective tissues 
Substantia nigra in Parkinson’s disease and other 

neurodegenerative diseases 

4 Drug delivery Diabetes (Insulin), Bronchitis (Bronchodilator) 

5 Temporary organ substitutes Liver, kidney (dialyzers) 

6 In-vitro models Drug testing, Toxicology analysis 

 

2.3 Conventional Methods of Tissue Engineering 

Conventional TE involves seeding healthy therapeutic cells in porous scaffolds to form tissue 

constructs (Langer and Vacanti 1993). The scaffolding material is biodegradable, and the cells are 

cultured in these preformed scaffolds that eventually degrade the material forming engineered 

tissues. The conventional tissue engineering method usually involves the following steps:  

1. The suitable cell source has to be identified and expanded to a clinically significant number. 

2. The suitable material (synthetic or natural) must be identified to serve as a tissue substrate; 

then, the material should be isolated, purified and molded for specific application. 
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3. The cells are later seeded into the substrates, and they can be cultured under dynamic or static 

conditions. The cell distribution in the scaffold has to be uniform in order to achieve optimal 

performance. 

4. The construct is then implanted in-vivo. Depending on the metabolic rate of the cells and 

diffusion conditions, vascularization may be mandatory in some applications for tissue 

survival. 

2.4 Current status of conventional tissue engineering:  

Tissues and organs of almost every part of the human body has been attempted to engineer 

using this technology. Significant success has been achieved in many applications; for example, 

nerve regeneration and their functional recovery have been achieved using various TE strategies 

(Cunha, Panseri et al. 2010). Electrospun nano-scaffolds made of natural materials like chitosan 

and laminin, polyesters like PLA and PGS has been successfully employed to aid nerve 

regeneration (Cunha, Panseri et al. 2010). Human corneal reconstruction using tissue engineering 

is in final stages for human implantation (Germain, Carrier et al. 2000, Lawrence, Marchant et al. 

2009, Paquet, Larouche et al. 2010). Several studies have also been focusing on tissue engineered 

heart valves, large blood vessels like aorta and smaller blood vessels. Seeding smooth muscle cells 

and endothelial cells in carefully designed scaffolds, and culturing them in pulsatile flow 

conditions have made tremendous progress in vascular TE (Ravi and Chaikof 2010, Villalona, 

Udelsman et al. 2010, Zhu, Cao et al. 2010).  

Much effort has also been focused on engineering bone and cartilages for different parts of 

the skeletal system including hip, knee and facial bone and cartilage. Osteoblasts and chondrocytes 

seeded on different natural and synthetic scaffolds have shown to promote deposition of 
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extracellular matrix (ECM) components like glycosaminoglycans and collagen thereby improving 

the mechanical properties of the implant (Wang, He et al. 2010, Yang, Yin et al. 2010). Limited 

success has also been achieved in creating tissue-engineered tendons, liver, pancreas and other 

vital organs.  

2.5 Disadvantages of conventional scaffolds:  

In almost all the above mentioned applications, the cell viability solely depends on the 

diffusion of oxygen, nutrients and growth factors from the surrounding host tissues. Mass transfers 

in these engineered tissue constructs are limited to a thickness of 100-200 microns at cell densities 

comparable to that of normal tissues (Carmeliet and Jain 2000) (Refer Fig. 1). In tissue constructs 

with larger dimensions, efficient mass transfer and subsequent cell survival can be achieved only 

by significantly reducing cell densities or by tolerating hypoxic conditions. This has been a major 

cause for the failure in engineering larger tissues like liver and pancreas using conventional 

methods. Moreover, in a conventional scaffold, uniform distribution throughout the construct 

cannot be achieved. Usually the seeded cells will stay on the peripheral surface of the construct 

(Zhang and Suggs 2007) forming a thin peripheral layer, and it can prevent the infusion of cells 

from the surrounding host after implantation; furthermore, these scaffolds cannot facilitate 

incorporation of multiple cell types in a controlled manner. 
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Figure 1:  The Challenge: Assembling 3D Tissue. 

Many studies have shown that the controlled co-culturing of multiple cell types can benefit 

each other in growth and cell regulation through endocrine and paracrine interactions (Cucina, 

Borrelli et al. 2003). However, this strategic multi layers cannot be implemented in a conventional 

scaffold. Hence, the slow vascularization, mass transfer limitation, low cell density and non-

uniform cell distribution limit conventional methods from engineering large and more complex 

organs. A potential solution to these drawbacks can be attained through a modular tissue 

engineering approach. 

2.6 Modular Tissue Engineering 

Modular TE is a scalable strategy of assembling tissue constructs from microscale modules 

containing both parenchymal and vascular components (McGuigan and Sefton 2006). This 

approach enables fabrication of the vascularized 3D construct with uniform cell densities and also 

can incorporate multiple cell types. Using this modular approach one can achieve the common 
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goals of TE mentioned earlier and avoid the common limitations of conventional scaffolds and 

fabrication techniques.  

 

Figure 2: Modular Tissue Engineering.  

A bio-inspired scalable strategy of assembling tissue systems from discrete modules containing 

parenchymal and vascular components. (Tiruvannamalai-Annamalai, Armant et al. 2014). 

Current Modular scaffolding methods and fabrication techniques  

Complex structures assembled from microscale modular components are seen widely in 

nature; for example, the kidney is made up of discrete modular components called the nephrons, 
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and the organ of liver is made up of numerous lobules. Based on this natural principle, complex 

tissues and organs can be engineered efficiently from microscale modules. This approach is called 

the bottom up approach as opposed to the top down approach of conventional scaffolds (Nichol 

and Khademhosseini 2009). Many techniques have been currently developed using this bottom up 

approach, and some of them are discussed below. 

1. Cells embedded in collagen modules: This modular approach has been aimed at creating 

capillary channels through random package of cylindrical collagen modules (McGuigan and 

Sefton 2006, Leung and Sefton 2010). The parenchymal cells were first mixed with cold collagen, 

and they were cut into cylindrical modules after the gelation of collagen. These modules can also 

be coated on the outside surface with endothelial cells to promote vascularization. Modules are 

then randomly assembled in a tubular structure to form a packed bed like arrangement. Culture 

medium or blood can be perfused in this packed bed assembly to form a mini vascularized tissue. 

Even though this method has the potential to eliminate the mass transfer limitation, they have not 

been able to produce self-supported and mechanically stable structure comparable to that of a 

native tissue. The other shortcoming is that the cell densities in the modules are not enough to 

match with the native tissues. Significant development is required to achieve higher cell densities 

and mechanical strength of modules. 

2. Directed assembly of hydrogel modules: This modular approach utilizes the surface tension 

characteristics of hydrogel modules to assemble them to form complex structures (Du, Lo et al. 

2008).  Modules of specific dimensions are made by controlled photopolymerization of hydrogels, 

and these hydrophilic structures are then dumped into mineral oil of specific viscosity. The 

hydrophobicity of oil causes the modules to aggregate and thus form tissue constructs of various 

desired shapes and sizes. They have also demonstrated a lock and key type of directed assembly 
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by varying the aspect ratios of the microscale modules. This versatile technique has the potential 

to eliminate the complicated assembly procedures involved in making a tissue construct. However, 

there are shortcomings in this method that can limit the maximum achievable size of tissue 

constructs. Uncontrolled random assembly of modules is another limitation that needs to be 

addressed before one can promote this technique to clinical applications. 

3. Cell sheet technology: This modular approach is capable of producing tissue constructs 

with mechanical properties comparable to that of native tissues (L'heureux, Paquet et al. 1998, 

L'Heureux, McAllister et al. 2007, See, Toh et al. 2010). This has been made possible by growing 

the cells in sheets, thereby allowing cells to deposit sufficient extracellular matrix materials that 

eventually strengthen the construct. More than a decade ago, this technology was pioneered by 

creating a multiple cell type laden vascular graft (L'heureux, Paquet et al. 1998). Human trials have 

also shown promising results (L'Heureux, McAllister et al. 2007). Although this technology 

produces scaffolds with mechanical properties close to native tissues, they are limited to possible 

shapes and structures. Moreover, leaking between different cell layers is another potential 

drawback of this technique. However, this method has been a better choice for highly proliferative 

cell types that can deposit sufficient extracellular matrix components. 

4. Cell printing technology: This has been one of the latest and more promising methods of 

fabrication that can produce rapid vascularized constructs. This method utilizes a traditional 

printer, replacing ink with cell matrix and cell suspension, creating 2D cell arrays that can be laid 

one over the other to make a 3D construct (Mironov, Boland et al. 2003, Fedorovich, De Wijn et 

al. 2008). Controlled patterning of cell arrays and matrix can be achieved through computer aided 

designing. Vascular network or anastomosis has been manipulated in 3D hydrogel layers by these 

organ printers (Wu and Ringeisen 2010). Using this method one can also make porous scaffolds 
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alone, with desired porosity, microstructure and mechanical properties. One potential limitation of 

this technique is low cell viability due to time elapse between laying subsequent layers of cells and 

matrix. Moreover, attachment between the layers has been difficult to achieve in some cases.  

5. Others modular strategies: Various other modular approaches have been tested by various 

groups to overcome the disadvantages of conventional scaffolds. Toroid shaped modules have 

been generated using agarose gels, and cells cultured in these modules showed predictable 

changes. These modules have also shown to assemble along their lumens in specific conditions 

(Livoti and Morgan 2010). Poor mechanical properties and complex assembly techniques has been 

some of the shortcomings of this approach. Similarly cardiac tissues have been engineered by 

assembling mechanically conditioned cell laden microscale units under serum free conditions 

(Naito, Melnychenko et al. 2006). This method also has the advantage of reducing immunogenicity 

upon implantation as they have been made under serum-free and ECM-free conditions. Micro-

molds made up of agarose has been shown to make controlled cell aggregates which serve as 

modules for 3D constructs (Nelson and Chen 2003). However, this system only has limited ability 

to produce desired mechanical stability. A comparison of major aspects of modular and traditional 

scaffolds is summarized in Table: 2 and schematically represented in Figure: 2.  

The major challenge to advance this modular approach has been to improve or develop 

new methods for assembling modules in a more precise and controlled manner. The other 

challenge has been to improve the resolution of the assembled 3D constructs by making better 

reproducible modules of even smaller dimensions. The mechanical properties of the modular 

scaffolds can be improved by more conventional methods like introducing fibers or membranes to 

support the modular constructs. 
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TABLE: 2 Conventional vs. Modular scaffolds 

S.N Aspects Conventional scaffolds Modular Scaffolds 

1 Distribution of cells Non-uniform Uniform 

2 Tissue cell densities Less than native tissues Comparable to native tissues 

3 Multi cellular structure Uncontrolled Can be achieved easily 

4 

Vascularization Limited Extensive 

Mass transfer and diffusion  <100-200µm >200µm can be achieved 

5 Mechanical Properties 
Comparable to native 

tissues 

Poorer than conventional 

scaffolds 

 

2.7 Principle Materials:  

In our study we mainly used chitosan and GAG proteoglycans for generating 

microcapsules. Our choice of biomaterial has been significantly driven by the charge the 

biomaterial carries and their role in regulating cellular activities. Some important characteristics 

of chitosan and GAGs are discussed below. 

2.7.1 Chitosan: 

Chitosan is a deacetylated form of chitin, a naturally available biopolymer. It is soluble in 

most organic solvents and its crystallinity and degradability depends upon its degree of 

deacetylation. Its molecular structure has a repeated N-acetyl-D-glucosamine and D-glucosamine 
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units (Lindahl and Hook 1978) which makes other compounds like GAGs to be covalently linked 

through the amine group. It is biocompatible, biodegradable and has been shown to have anti-

microbial properties. It can accelerate wound healing directly and indirectly and thus a promising 

biomaterial for cell-based transplantation, non-viral vector based gene therapy and in regenerative 

medicine (Shi, Zhu et al. 2006). Hence, it can be a suitable material for our modular scaffolds both 

in the short term and the long term. 

2.7.2 Glycosaminoglycans (GAGs): 

Proteoglycans are proteins with one are more GAG chains attached to them, predominantly 

found in connective tissues, cell surfaces and in intracellular and extracellular matrices (Kolset, 

Prydz et al. 2004, Iozzo 2005, Sasisekharan, Raman et al. 2006, Couchman and Pataki 2012). The 

GAGs are complex carbohydrates of 10-100kDa molecular mass and participate in wide range of 

biological functions. There are seven commonly recognized types of GAGs. Six of them have a 

similar carbohydrate backbone and hexosamine residues. Hyaluronic acid, dermatan sulphate, 

heparin, heparan sulphate, chondroitin sulfate and keratan sulfate are the six major classes of 

GAGs (Lin and Perrimon 2002, Kolset, Prydz et al. 2004, Iozzo 2005, Ferdous and Grande-Allen 

2007, Theocharis, Skandalis et al. 2008, Couchman and Pataki 2012). With the exception of 

hyaluronic acid all others are sulfated, with heparin being the most highly sulfated GAG of all. 

The criteria that distinguish the GAG types are the type of monomer, the position of glycosidic 

linkages and the amount of sulfation. All GAGs are negatively charged due to the presence of 

acidic sulphate and/or acid groups (COO-)(Gandhi and Mancera 2008). The GAGs are widely 

distributed in animals and are essential for maintaining the integrity of connective tissues.  
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Figure 3: Glycosaminoglycans and their functions 

They are highly viscous and have low compressibility; hence, they function as a lubricating 

agent in articulating joints (Gandhi and Mancera 2008). They support the structural integrity of 

cells inside tissues and facilitate their migration by interacting with a wide range of 

macromolecules (ref. fig.:3). In our study various types of GAGs and GAG like biomaterials were 

tested for cell viability, proliferation, differentiation, mechanical strength, permeability, etc. 

Optimal formulations were chosen for various cell types. Combination of GAGs were also used to 

reproduce specific characteristics. 
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CHAPTER:	3	

3.1 CENTRAL HYPOTHESIS AND SPECIFIC AIMS 

Our modular tissue engineering strategy involves the use of a polysaccharide microcapsule. 

The wall of the microcapsule is made out of GAG-chitosan polyelectrolyte complex and the 

capsules are hollow, which gives us room for tuning the interior environment. The size of the 

capsules can be achieved from 200-2000μm in diameter during the encapsulation process. The 

capsule wall permeability, thickness and strength are tunable via the molecular weight of its 

material components. The capsules are completely biodegradable and the rate is dependent on its 

material composition. These capsules serve as the building blocks of our modular constructs.  

.  

 

Figure 4: Central Hypothesis: Modular constructs assembled from micro scale modules 

permeated by a network of interconnected, endothelial cell-lined channels can facilitate extensive 

vascularization and mass transport. 

  

 These capsules are seeded with parenchymal cells on the inside and endothelial cells on 

the outside. The central hypothesis to be tested is that, once these cell laden capsules are fused 
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together it will form a 3D modular construct permeated by a network of interconnected, endothelial 

cell-lined channels (ref. fig.: 4), that can facilitate rapid and extensive vascularization upon 

implantation or perfusion 

The specific aims of the proposal are: 

1. To characterize different GAGs and develop tools and methods for tuning internal 

microcapsule environment to accommodate parenchymal cells. 

2. To characterize capsule physical properties and mechanical stability. 

3. To modify the outside surface of capsules to accommodate endothelial cells. 

4. To develop tools and methods for assembling individual modules into 3D constructs with 

interconnected channels. 

5. To develop design parameters for maintaining hepatocyte and endothelial cells in perfused 

modular constructs. 

6. To determine the effects of module endothelialization on vascularization of constructs in 

vivo. 

3.2 Overall research design: 

The overall plan to test my central hypothesis is schematically represented in figure 4. First the 

internal microenvironment of the microcapsules were optimized to accommodate the parenchymal 

component. Secondly, the outside surface was tuned for endothelial cell seeding. Then suitable 

method for fusing the capsules were formulated and finally the construct was tested both in-vitro 

dynamic cultures and in-vivo studies. 
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Figure 5: Overall research design. The internal microenvironment and outside surface were 

optimized, then a suitable method for fusing the capsules was formulated and finally the construct 

was tested both in-vitro dynamic cultures and in-vivo studies. 

3.3 Significance and Rationale 

Modular tissue engineering has great potential in engineering more advanced tissues and 

organs thereby advancing the field of tissue engineering. Some of the modular strategies have been 

well studied and documented, yet the method of assembling tissue constructs from microscale 

modules is relatively new. This strategy is very significant because of its ability to reproduce the 

full functionality of tissues by mimicking the innate architecture and complexity of natural tissues. 

It has the capability to reproduce complex cellular mechanisms that are the hallmark of the 

complex tissues and organs.  



19 

 

Our microencapsulation technique makes this modular strategy even more efficient by its 

simple and versatile nature. GAG based microenvironment has been shown to regulate a wide 

spectrum of biological activities and hence compared to other modular techniques our capsule 

system has the capability to mimic a wide range of microenvironments. The hollow nature of the 

capsules makes it more advantageous for fine tuning, and most of the capsule formulations are 

fully biodegradable by cells. Hence our study is very significant and promising in producing 

functional bioartificial tissue constructs. Integrating this modular approach and the traditional 

approach of engineering tissues can also lead to creation of even more advanced scaffolds and 

fabrication techniques in the future. Hence our research has immense potential in promoting the 

field of TE and regenerative medicine to the next level of more advanced, optimized tissue and 

organ systems. 
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CHAPTER:	4		

TISSUE DENSITY CULTURES 

4.1 Introduction: 

The first step in fabricating a modular construct is to develop suitable methods for tissue 

density cultures. This is one of the defining features of a modular construct, thru which we can 

efficiently pack cells with clinically significant cell density in a relatively small construct volume 

without losing cell performance. In this chapter, methods to develop tissue density cultures were 

explored by characterizing different GAGs and various ways to tune the internal 

microenvironment were investigated. This chapter also details different methods to optimize the 

capsule system, depending on the type of cells and its behavior in the GAG microenvironment.  

4.2 Aim and Rationale:  

The main specific aim of this chapter is to develop tissue density cultures using our GAG 

based encapsulation methods. The rationale for this aim is that by developing tissue density 

cultures with cell densities comparable to that of the natural organs and tissues, we can fabricate 

larger tissues without compromising its overall performance. The significance of this objective is 

that it will help overcome the common diffusion limitation across a given module and a more 

uniform cell microenvironment can be maintained across a tissue construct. These tissue density 

capsules unlike porous scaffolds will enable us to reproduce the full functionality of the organ of 

interest in the long term. 
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4.3 Experimental Approach: 

Study 1: Cells were encapsulated in different GAG microcapsules and evaluated.  

Optimal capsule formulation was identified by encapsulating primary and undifferentiated cells in 

microcapsules made up of different types of GAGs and GAG like biomaterials and monitoring cell 

viability, growth, proliferation and differentiation.  

Study 2: Microcarriers were co-encapsulated to provide surface for adhesion. 

Additional optimization was performed for adhesion dependent cells by co-encapsulating surface 

providing microcarriers made of suitable biomaterial including ECM biopolymers like collagen, 

serum proteins etc. This step was particularly helpful for adhesion dependent cells. 

Study 3: Self-contracting capsules were made by utilizing cell mediated contraction of collagen 

matrix.  

For cells that have low proliferation rates, self-contracting thin walled and matrix rich capsules 

were made by incorporating more collagen inside capsules. The cell mediated contraction of the 

encapsulated collagen matrix yielded tissue density capsules in short term cultures. This also 

reduced the culture durations, for cells that won’t tolerate GAG rich microenvironments for longer 

durations.  

4.4 Materials and Methods:  

Briefly, in all the above mentioned studies, encapsulated cells were evaluated for 

morphology, distributions, cell viability, proliferation and differentiation. Cell viability was 
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monitored using Calcein AM/Ethidium Homodimer live/dead fluorescence assay. Proliferation of 

cells was quantified using Hoechst DNA quantification assays. Differentiation of cells was 

monitored using immunohistochemistry of cell specific markers. General morphology of cells, 

aggregates and their distribution was monitored using phase contrast and confocal microscopy, 

H&E and Masson’s Trichrome assay. Detailed materials and methods are discussed below. 

4.4.1 Cell culture conditions 

All chemical and culture reagents were purchased from Sigma-Aldrich unless mentioned 

otherwise. The human trophoblast cell line HTR-8/SVneo (Graham, Hawley et al. 1993) (HTBs) 

was used as the model cell type for some studies due to their high proliferative capacity and ability 

to form dense, tissue-like aggregates. The cells were cultured in 10 cm tissue culture dishes, using 

F12/DMEM supplemented with 5% fetal bovine serum (FBS), 50 mg/ml gentamycin and 2.5 mg/L 

Amphotericin-B.  

For co-culture studies, vascular smooth muscle cells (SMCs) were isolated from rat aorta 

and endothelial cells (AECs) were isolated from sheep aorta using established enzymatic 

procedures (Christen, Bochaton-Piallat et al. 1999, Butcher and Nerem 2004, MacNeil 2007). 

Sheep aortas were procured from a slaughterhouse under an educational license (Wolverine 

Packing Company, Detroit, MI). Aortas were obtained within 2 hours of slaughter and used for 

AEC isolation immediately. Human umbilical vein endothelial cells (HUVECs) obtained from 

ATCC (Manassas, VA) were also used as vascular component. Primary cells were used from 

passages 3 to 6. SMCs and AECs were maintained in DMEM supplemented with 10% FBS, 50 

mg/ml gentamycin, and 2.5 mg/L Amphotericin-B. In addition, SMC cultures were supplemented 

with 2 ng/ml fibroblast growth factor 2 and AECs with 50 ng/ml of epidermal growth factor. For 
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HUVECs, MCDB 131 medium supplemented with Endothelial Cell Growth Kit-VEGF (ATCC) 

was used. During co-cultures of parenchymal and vascular components, a 50-50 mixture of the 

respective culture media was used. Primary hepatocytes were isolated from Sprague dawley rats 

weighing 250-450 g by the two-step collagenase perfusion technique described by Seglen (Seglen 

1979) and modified by Dunn (Dunn, Yarmush et al. 1989, Dunn, Tompkins et al. 1991). Cell 

viability averaged 90-95%, as assessed by trypan blue exclusion, and the average yield was 4x108 

viable cells per liver. Type I collagen was isolated from Sprague dawley rat tail tendons as previous 

described (Dunn, Tompkins et al. 1991) and used for hepatocyte collagen sandwich cultures. 

Hepatocyte culture medium consisted of high glucose DMEM medium supplemented with 10% 

fetal bovine serum (FBS), 0.5 U/mL insulin, 7 ng/mL glucagon, 20 ng/mL epidermal growth 

factor, 7.5 µg/mL hydrocortisone, 100 mg/L gentamycin and 2.5 mg/L amphotericin B. Culture 

medium was collected and analyzed for albumin and urea synthesis using established methods 

(Matthew, Sternberg et al. 1996, Surapaneni, Pryor et al. 1997). All dish cell cultures were 

maintained at 37ºC in a 5% CO2/95% air humidified incubator. 

4.4.2 Biopolymer Materials 

The materials used in preparing our microcapsules and modular scaffolds were: chitosan 

from crab shells, molecular weight ~600 kDa (Sigma); chondroitin 4-sulfate sodium salt from 

bovine trachea, molecular weight ~50-100 kDa (Sigma); hyaluronic acid sodium salt from 

Streptococcus equii, molecular weight 1500-1800 kDa (Sigma); dextran sulfate sodium salt, 

molecular weight ~500 kDa (SCBT); heparin sodium salt from porcine intestinal mucosa, 

molecular weight 17-19 kDa (Celsus); carboxymethylcellulose sodium salt, molecular weight 250 

kDa (Sigma); polygalacturonic acid sodium salt (Sigma) and collagen type-I isolated from Sprague 

Dawley rat tail tendons (Invitrogen). 
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Aqueous solutions of the polyanions (chondroitin 4-sulfate (CSA), carboxymethylcellulose 

(CMC), hyaluronic acid (HA), polygalacturonic acid (PGA)) were prepared in a HEPES-sorbitol 

buffer containing: 0.4 g/L KC1, 0.5 g/L NaC1, 3.0 g/L HEPES-sodium salt, and 36 g/L sorbitol, 

pH 7.3. Polyanion solutions were sterilized by autoclaving at 121C. The two formulations of 

polyanionic solutions studied for capsule formation were: (a) 4 wt% CSA/1.5 wt% CMC and (b) 

1.0 or 1.5 wt% HA. To prepare the polycationic solution, chitosan powder was suspended in water 

(3 g in 250 ml) and autoclaved at 121° C. Under sterile conditions, 0.6 ml of glacial acetic acid 

was added to the aqueous suspension and stirred for 4 hours to partially dissolve the chitosan. 

Likewise, 19 g of sorbitol was autoclaved in 250 ml of water and then mixed with the chitosan 

solution. Undissolved chitosan was removed by centrifugation at 500 G. PGA (0.1 wt%) in 

HEPES-sorbitol buffer was used for surface stabilization of capsules. For capsule experiments 

employing collagen, cold collagen-I solution was diluted to 2 mg/ml in 1 mM HCl, and then 

neutralized with 10X DMEM (9:1 ratio). Normal saline (0.9 wt% NaCl) was used for capsule 

washing immediately after formation. 

4.4.3 Cell encapsulation  

Cells were encapsulated in microcapsules produced by polyelectrolyte complexation 

between cationic chitosan and polyanions as described in detail previously (Matthew, Salley et al. 

1993, Lin and Matthew 2002). In brief, the 5-10 million cells were suspended in 1 ml of a 

polyanionic solution (either 4 wt% CSA/1.5 wt% CMC, or 1.5 wt% HA). Droplets of the cell 

suspension (~0.8 mm diameter) were dispensed into 30 ml of stirred chitosan solution containing 

2-3 drops of Tween 20. A 24 gauge Teflon catheter was used to generate droplets and filtered air 

was blown coaxially to shear away the droplets at a suitable size. Care was taken during 

encapsulation process to ensure uniform droplet size. Capsule membranes were formed almost 



25 

 

instantaneously by ionic complexation between the oppositely charged polymers. Capsules were 

allowed to mature for ~1 min in the stirred chitosan, followed by two washes with normal saline 

and surface stabilization by washing with 0.1% PGA solution. Microcapsules were subsequently 

equilibrated with culture medium for ~60 min and then transferred to suitable culture conditions 

(Figure 5).  

The interior environment of the capsules could be enhanced with collagen gel or adhesion 

surface-providing microcarriers when desired. For capsules with an internal collagen matrix, 

chilled Type I collagen solution (1 mg/ml in 1 mM HCL) was neutralized with 10X DMEM in a 

9:1 ratio, and mixed with an equal volume of double strength polyanionic solution (e.g. 8% 

CSA/3% CMC). Cells were then suspended in this mixture instead of the regular polyanion 

solution, and capsules were made as described previously. For microcarrier co-encapsulation, PBS 

swelled microcarriers were suspended along with cells in normal strength polyanionic solution at 

a volume ratio of 0.5:1 (packed cells+microcarriers:polyanion solution). The suspension was then 

dispensed as droplets to generate capsules as described above. Capsules enhanced with interior 

collagen or microcarriers were subjected to similar washing and surface stabilization steps as 

described above prior to culture. 
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Figure 5: Microencapsulation through complex coacervation. Droplets of cells suspended in a 

polyanionic solution were dispensed into a stirred chitosan solution. Ionic interactions between the 

oppositely charged polymers formed an insoluble ionic complex membrane at the droplet-solution 

interface, thus encapsulating the suspended cells.  

4.4.4 Evaluation of cell proliferation inside capsules 

Cell proliferation inside capsules was characterized using either a Hoechst DNA 

quantification assay (Gallagher and Desjardins 2001) or an MTT assay. Briefly, 30 capsules were 

distributed into each well of a 24 well plate. Capsules were maintained under standard culture 

conditions, and one well was sacrificed at each time point. The capsules were gently ruptured using 

a fire-polished Pasteur pipette, and the cell aggregates within were lysed using cell lysis buffer 
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(0.1% SDS, 10 mM Tris-HCl, 1 mM EDTA) to extract whole DNA. To an aliquot of this extract 

was added an equal volume of Hoechst 33258 dye dissolved at 1 mg/ml in TNE buffer (50 mM 

Tris-HCL, 100 mM NaCl, 0.1 mM EDTA). Fluorescence of the mixture was then measured 

(EX/EM 350/450 nm). A calf thymus DNA standard curve was used to determine the total DNA 

concentration. For the MTT proliferation assay, capsules were washed in PBS and suspended in 

phenol red free DMEM containing 2 mg/ml MTT. After incubation for 4 hours at 37°C, the 

solution was aspirated and 150 µL of DMSO was added to extract the formazan crystals. After 10 

mins of rotary agitation, the absorbance of the DMSO extract was measured at 540 nm using a 

spectrophotometer. Exponential cell growth was assumed and the specific growth rate was 

determined by fitting the following equation to the absorbance reading:   
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Where A0 and A are initial and final absorbance or fluorescence readings respectively, t0 and t are 

initial and final time points, and µ is the specific growth rate in time-1.  

4.4.5 Cell viability imaging and histology 

Cell viability was assessed using Calcein-AM and ethidium homodimer (Cytotoxicity Kit 

L3224, Invitrogen). The cell laden capsules were washed with PBS and incubated in serum free 

DMEM containing 4 µM Calcein-AM and 4 µM ethidium homodimer for 20 min at 37ºC. For 

long-term tracking of HUVECs on capsules and fused capsule constructs, CellTracker™ Green 

CMFDA (Invitrogen) was used. Briefly, adherent cells were rinsed with PBS and incubated in a 

serum free culture medium containing 5 µM CellTracker Green probe for 45-60 min. After the 

incubation the medium was replaced with pre-warmed normal medium and incubated for another 
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30 min for the dye to undergo modification due to intracellular esterases. The cells were then 

trypsinized and seeded onto capsule outer surface. Cell fluorescence was then observed using 

wide-field fluorescence microscopy and laser scanning confocal microscopy (Zeiss LSM-410). 

The distribution and organization of cells and matrix inside the encapsulated cultures were 

investigated by histology. Cell laden individual capsules and fused capsule constructs were washed 

in PBS, fixed in 10% buffered formalin, dehydrated in an ethanol series, paraffin embedded, 

sectioned (4-6 µm) and stained using Hematoxylin and Eosin (H&E) or Masson’s trichrome stains 

(Sigma-Aldrich). The stained sections were observed using bright field microscopy. 

4.5 Results: 

4.5.1 Characteristics of different GAG based microcapsules and their properties: 

A model system was designed to study the influence of different GAGs on microcapsule 

properties including wall thickness, strength, rate of degradation and invasiveness of cells to 

capsule wall. Human trophoblast cell line HTR-8/SVneo (HTBs) was chosen as the model cell 

type due to their high proliferative capacity and tolerance to hypoxic conditions. These HTBs were 

encapsulated in different GAG based microcapsules and phase contrast images were captured at 

different time intervals. HTBs grew rapidly and formed spheroids in all test formulations. By day 

30, HTBs filled the capsules in all formulations. However, the growth pattern of HTBs and capsule 

integrity differed between formulations.  
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Figure 7: Histology of microencapsulated culture es of human trophoblasts (HTBs) in 

various GAG-chitosan capsule formulations. HTBs in CSA/CMC capsules on days (A) 5, (B) 
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10, (C) 15, (D) 20, (E) 25, (F) 30. (G) Hyaluronan/CMC capsules. (H) HA capsules. (I) Dextran 

sulfate/CMC capsules quickly ruptured due to osmotic swelling. 

Compact spherical aggregates were seen in CSA capsules (Fig. 7A-F) while the aggregates 

were irregular and significantly dispersed when an internal collagen matrix was included (Fig.8A, 

B). HA/CMC formed very thin walled capsules, many of which collapsed after a week of culture 

(Fig. 7G). Capsule wall thickness increased, and the integrity of the capsule was compromised in 

the HA formulation due to rapid HTB invasion into the capsule wall (Fig. 7C). Notably, the 

CSA/CMC microcapsules were more intact and the HTBs were found to be less invasive in this 

formulation. Capsules made with Dextran sulfate (DXS) and mCMC (4%DXT and 3% mCMC) 

ruptured rapidly due to swelling (Fig 7I). 

4.5.2 Tuning the inner environment of the microcapsules with matrix proteins and 

Microcarriers: 

The hollow nature of the GAG based microcapsule enables us to tune the inner 

microenvironment efficiently. Here we investigated the effect of collagen matrix and surface 

providing microcarriers on cell microenvironment by encapsulating them in microcapsules along 

with cells. When collage matrix is included along with the HTBs, the aggregates are loosely 

distributed inside the CSA capsules (Fig 8A, B) but the cell invasion into the walls remained the 

same. The other attempt to tune the inner environment is by providing a solid surface for the cells 

to attach by encapsulating microcarriers along with cells. We investigated the effect of gelatin 

coated dextran microcarriers (Cytodex-3) encapsulated in high molecular weight HA, on aortic 

smooth muscle cells (SMCs) proliferation and viability. The Live/Dead assay using Calcein AM 

and Ethidium Homodimer showed that encapsulation of microcarriers along with the cells 
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increased the viability and proliferation of SMCs. Similar results were not observed with 

microcarriers made of dextran only instead there was a decrease in total number of viable cells. 

This method can be very productive especially with adhesion dependent cells.  

 

Figure 8. Tuning the inner capsule microenvironment with a collagen gel matrix and 

microcarriers. (A-B) HTBs in CSA/CMC capsules with a collagen type-I gel after one week of 

static culture. (A) H&E histology. (B) Phase contrast image. (C-E) SMCs co-encapsulated with 

gelatin coated dextran (Cytodex-3) microcarriers in HA capsules. (C) 60 min after encapsulation. 

(D) Day 14 of culture. (E) Calcein-AM stained fluorescence images on day 14 (green = live cells, 

red = microcarriers). 
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4.5.3 High density encapsulated cell cultures 

The major shortcoming in traditional scaffolds is their inability to achieve cell density 

comparable to that of a native tissue. We investigated the ability of GAG-based microcapsules to 

maintain clinically significant cell density needed to fabricate a tissue contract of implantable size. 

HTBs were encapsulated in CSA-capsules and were cultured for at least 45 Days in static 

conditions. Encapsulated HTBs grew rapidly, eventually filling the capsules, and most cells 

appeared viable with a distinct nucleus up to at least day 30 (Figure 7A-F). This indicated that the 

capsule wall was sufficiently permeable to nutrients to allow maintenance of a dense, tissue-like 

cell mass. The estimated capsule cell density (~6x107 cells/cm3, assessed via image analysis) at 

day-30 was high enough to replicate the cell density in many tissues. By the end of week-3, HTBs 

had invaded the capsule wall as seen in Figure 8C. This in vitro invasion suggests that the capsule 

materials may be degraded within a relatively short time frame upon implantation in vivo. No 

necrotic core was observed within the encapsulated cell mass at least until 45 days of static culture.  

4.5.4 Collagen contracted capsules for non-proliferative cells and short time cultures: 

Due to their high proliferative capability, we used HTB cell line as our model system for 

our previous studies to characterize the capsule system. However, not all the cells grow well in our 

capsule system and hence attaining cell growth with higher tissue densities is a challenge. To 

overcome this, we developed a method of contracting the initial volume of cells encapsulated to a 

clinically significant density, using collagen. Here we investigated the ability of collagen to 

contract the capsules by encapsulating them at different mass ratios with GAG solution, along with 

cells.  
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SMCs in CSA/CMC capsules with collagen matrix: Initially when collagen was 

encapsulated along with HTBs in CSA/CMC capsules at a final concentration of 1.5 mg/ml, the 

aggregates became loosely packed with healthy cells as mentioned before. When collagen of same 

concentration was encapsulated along with SMCs in CS/CMC capsules, the cells were initially 

fairly dispersed inside the capsules. However, within 24hrs the cells contracted the collagen matrix 

and formed a denser mass of cells and matrix as shown (Fig 9A-C). Even though the internal matrix 

had contracted, the walls of the CSA capsules were unyielding and retained their spherical shape 

as shown below. Since, SMCs didn’t proliferate well in CSA we also investigated the ability of 

HA capsules to collagen contraction.  

SMCs in HA capsules with collagen matrix: We experimented different concentrations 

of HA and collagen to maximize the contraction of capsules and increase the cell density while 

retaining the integrity of the capsules. Maximal contraction was achieved using formulations 

containing 0.5-0.7 g/ml of HA and 1.0- 1.2 mg/ml of collagen as shown (Fig 9). Unlike CSA/CMC 

capsules, this formulation yielded good viability of SMCs in both short term and long term cultures 

as evident from the live/dead staining (Fig 9D). Optimization of capsule formulation maybe 

required for other cell types to attain maximal growth and proliferation. Hence this method can be 

a potential tool to make tissue density capsules with cells that normally do not proliferate well in-

vitro.  
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Figure 9. Vascular smooth muscle cells in collagen-containing capsules. 

(A-C) SMCs in CSA/CMC capsules with a 1 mg/ml collagen gel. (A) 60 min after encapsulation, 

SMCs are well dispersed in the internal collagen matrix. (B) After 24 hours of culture, the cells 

had contracted the internal collagen gel and formed a dense cell-matrix mass. (C) Calcein-AM 

fluorescence of contracted cell mass. Inset shows phase contrast image. (D-F) SMC encapsulated 

in HA capsules with 1 mg/ml collagen-I gel.  (D) 60 min after encapsulation, cells are well 

dispersed in the internal collagen matrix. (E) After 24 hours of culture, the cells contracted the 

internal collagen gel, simultaneously collapsing the entire capsule structure to form a denser 
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module with a convoluted surface membrane. (F) Calcein-AM fluorescence of contracted cell 

mass. Inset shows phase contrast image. (G-I) Histology of contracted capsules. H&E (G,H) 

staining showing compacted capsule structure with minimal void volume. (I) Masson’s Trichrome 

staining of contracted capsule, showing the distribution of collagen (blue) within the structure. 

A quantitative analysis reveals a 70-80% reduction in total volume of capsules within 24 

hours (Fig 10). Hence this enables us to achieve tissue densities very fast. This will be very useful 

mainly in case of low proliferative cells and cells that can’t grow fast in GAG based 

microenvironment. Moreover, this can also reduce diffusion limitations by reducing the diameter 

of the capsules. 

A) 

 

 

 

B) 
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Figure 10: Percent decrease in dimensions of collagen contracted capsules. (A) Decrease in 

diameter of the capsules. (B) Decrease in the total volume of the capsules. 

Other cell types:  

We also encapsulated Rhesus monkey embryonic stem cells in our capsule systems and 

maintained them for two weeks in MEF monolayers. After a week of culturing, the stem cells 

formed embryoid bodies (Figure 11). At the end of week two, the embryoid bodies formed distinct 

compartments with different cell morphologies (Figure 12). The cell layers that are close to the 

capsule wall showed distinct cell nucleus whereas the cell layers farthest from the wall showed 

condensed chromatin fragments in H&E staining. This might be due to growth factor binding 

capabilities of the GAGs in the capsule wall that are close to one side of the embryoid bodies. The 

diffusion gradient across the length of the capsule might also have contributed to this difference in 

morphology. Cell encapsulated capsules that are cultured under feeder free conditions were also 

seen healthy and viable at the end of day-4 (Figure: 13).  Further rigorous analysis is needed to 
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report solid claims about the status of pluripotency and self-renewal of stem cells cultured in our 

capsule system. Overall, we believe that GAG based culture systems possess superior properties 

in delivering growth factors and providing biochemical cues and can be advantageous in stem cell 

maintenance and differentiation.  

 

Figure 11: Bright field Images (4% Chondroitin Sulfate-A/1.5% Carboxymethyl Cellulose 

capsules with ES cells in MEF Monolayer); A,B: 24 hours after encapsulation shows smaller and 

loosely packed cell aggregates; C, D: Day-10 images show embryoid bodies formation which 

occupies most of the capsule volume. 
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Figure 12: Rhesus monkey ES cells in MEF Monolayer (Co-culture); Hematoxylin and Eosin 

staining of (4%Chondroitin Sulfate-A/1.5%Carboxymethyl cellulose) capsule sections; A, B: Day-

7 of encapsulated culture shows smaller aggregate with distinct nucleus; C,D: Day-14 of 

encapsulated culture shows embryoid bodies with distinct compartments showing different cell 

morphologies. 
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Figure 13: Calcein AM -Fluorescent Images-Cells Seeded: Rhesus monkey ES cells; A,C: Bright 

field images and B,D: respective fluorescent images; ES cells encapsulated and maintained on 

feeder layer free conditions show good viability during the first week of culture.  

4.5.5 Growth rates of encapsulated smooth muscle cells 

Sheep aortic smooth muscle cells were encapsulated for purposes of evaluating the 

performance of a normal parenchymal cell type. Use of these cells also allowed indirect evaluation 

of their interaction with endothelial cells in a subsequent study. SMC specific growth rate data 

showed that the cells proliferated significantly better in HA than in CSA/CMC capsules (p<0.05) 
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during the first 36 hours of culture (Figure 14). However, differences between the formulations 

were less pronounced after 36 hours (p<0.10). The difference in cell proliferation might be 

attributable to hyaluronan-specific signaling through CD44 cell surface receptors (Jain, He et al. 

1996). Alternatively, CSA, a sulfated GAG, may have bound and partially sequestered growth 

factors necessary for SMC growth. In addition, the HA capsules appeared to support slightly better 

cell attachment to the internal surface than CSA/CMC, thereby promoting formation of several 

small aggregates rather than the single large spheroid typically seen in CSA/CMC capsules. . 

Smaller aggregates are less likely to be adversely affected by diffusion limitations and may thus 

exhibit higher growth rates in the early stages than larger aggregates. 

 

Figure 14. Specific growth rates of aortic smooth muscle cells in HA and CSA/CMC capsules. 

Specific growth rates were calculated using DNA measurements. Error bars represent standard 

deviations of 3-5 independent measurements. Significant differences are denoted by single or 

double asterix (* = p<0.05; ** = p<0.10). 
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 Specific growth rate of VICs vs. SMCs. In order to study the proliferation pattern of 

different cell types, MTT assay was employed in our capsules system seeded with different cell 

types. Porcine smooth muscle (SMCs) cells and valvular interstitial cells (VICs) were seeded in 

HA and CSA capsules respectively and their specific growth rate were calculated. 
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Figure 15: Proliferation of SMCs and VICs in CSA/CMC capsules 

Both the cell types followed a similar pattern of growth in CSA/CMC capsules. There was a slow 

growth initially followed by an exponential increase and finally a lag phase. The initial lag in the 

growth can be attributed to the initial adaptation time required for the newly seeded cells in our 

GAG microcapsules. Once the cells overcome the initial shock, they show an exponential increase 

in the growth rates and that leads to the formation of larger aggregates. The formation of larger 

aggregates introduces diffusion limitation in to the system that results in the decrease in the growth 

rates as seen in the charts.  
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Figure 16: Proliferation of SMCs and VICs in HA capsules 

 However, the VICs behave differently in the HA capsules as explained previously. The 

VICs adapted quickly to the HA environment than the SMC and formed larger aggregates that 

resulted in the decrease of its specific growth rates. These growth patterns suggest the biological 

phenomenon that can be exploited in our modular systems to recapitulate the in-vivo patterns. We 

can also intervene in many ways as discussed earlier in the chapter by co-encapsulating collagen 

or microcarriers to change the growth dynamics of the cells inside the modules. 

4.6 Summary and Discussions: 

In summary, we have demonstrated the cell encapsulation in GAG-chitosan capsules with 

physical and biological properties tunable via composition; the capsules support high density cell 

growth and allow a range of options for adjusting the interior microenvironment; some 

formulations are fully cell-degradable and permeable to most growth factors and cytokines. The 
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GAG-based microcapsules described above allow efficient mass transfer, which is evident from 

the tissue-density cultures that were maintained for up to 45 days under static culture conditions. 

The diameter of the capsules can be easily controlled between 0.3 and 2.0 mm, and smaller 

diameters are achievable using more sophisticated droplet formation methods such as 

microfluidics. In addition, the cell-contractable capsule formulations provide an additional 

mechanism for modulating cell density within either the capsules or the fused construct. The high 

density trophoblast cultures were primarily intended to demonstrate the potential of the 

microcapsules with a highly proliferative human cell type.  However, these cultures also provided 

direct evidence of both the degradability of the GAG-chitosan materials, and the ability of cells to 

invade the capsule wall. 

 The trophoblast cell line maintains some characteristics of human trophoblasts, in 

particular the ability to tolerate hypoxic conditions and to invade tissue rapidly. Both 

characteristics are presumably related to its original, placenta-formation function (Chang and 

Vivian Yang 2013) and may be mediated by focal expression of MMPs, GAG lyases or other 

matrix degrading enzymes. Wall invasion and cell escape in these trophoblast cultures was evident 

after week 2 of culture and was clearly captured in histological sections. This phenomenon strongly 

suggests that implanted capsules would present only a temporary barrier to integration of 

encapsulated cells with adjacent tissues. Coupled with the known pro-angiogenic effects of GAG-

based materials (Black, Hudon et al. 1999, Ferretti, Boschi et al. 2003, Mathieu, Chevrier et al. 

2013), these results further suggest that rapid vascularization is a likely outcome after 

transplantation of capsule-based constructs.  
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CHAPTER:	5	

PHYSICAL PROPERTIES OF MODULES 

5.1 Introduction 

The physical properties of the capsules, especially the wall permeability and capsule 

integrity is essential to ensure that our modular construct design is non-diffusion limited. In this 

chapter capsules made out of our stable formulations HA and CSA/CMC representing soft and 

hard tissue applications respectively were studied to quantify membrane permeability and capsule 

wall integrity. Establishing the relation between the capsule material properties such as molecular 

weight and their physical properties, enables us to customize our modular system for specific 

applications. 

5.2 Aim and Rationale 

The specific aim of this chapter is to quantify the physical properties of the individual 

modules that is relevant to ensure a non-diffusion limiting design. In a conventional preformed 

scaffold, there is a 200μm limit above which the cells are usually subjected to reduced nutrient and 

gaseous exchange. In our modular design, in order to make sure that each module provides a 

microenvironment for the encapsulated cells that is not subjected to the 200μm limit, we design 

the system with minimal resistance to diffusion. This optimization is done without compromising 

their other key features especially mechanical integrity. In this chapter we studied the capsule wall 

permeability and wall mechanical integrity to achieve our specific aim. 
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5.3 Experimental design 

Study 1: In the first phase, a suitable biomolecule was chosen (globular protein albumin) to study 

its diffusion across the capsule membrane. The capsules were loaded with fluorescently tagged 

albumin and its diffusion across the membrane was fluorometrically quantifies. Modelling was 

done to calculate membrane permeability from the rate of diffusion curve of albumin. 

Study 2: In the second phase, an agitation system was designed to study the capsule wall integrity. 

A suitable power was fed to the system containing capsules suspended in an aqueous medium 

using a turbine agitator. The total number of unbroken capsules was then counted at regular time 

intervals. Using this technique, specific material components with higher influence over the other 

material components of the capsule wall were identified.  

5.4 Material and Methods 

5.4.1 Evaluation of capsule wall permeability 

The permeability of capsule walls was studied fluorometrically by measuring the rate of 

diffusion of tetramethylrhodamine-labelled bovine serum albumin (BSA-TMR) from the capsules, 

as detailed before (Crooks, Douglas et al. 1990, Matthew, Salley et al. 1993, Lin and Matthew 

2002). The rate was used to calculate an overall mass transfer coefficient for the capsule wall 

membrane under mixing conditions. 
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Figure 17: Rate of diffusion of albumin across capsule membrane.  

 A precise number of capsules (100-150 per sample, n=3) of similar size from each 

formulation were counted out and equilibrated in HBSS (pH 7.4) containing 2.5 mg/ml BSA (13% 

TMR-labeled. The equilibration saturated all the BSA binding sites of the capsule wall and 

efficiently loaded BSA into the capsules. After washing and resuspension in fresh HBSS, the 

capsules were redistributed into three fluorescence cuvettes (4 ml volume, 1 cm light path) at 35-

50 capsules per cuvette. The HBSS volume was made up to 3 ml and the cuvettes were sealed and 

mixed horizontally on a linear shaker at 100 rpm. The outward diffusion of BSA was followed by 

measuring the fluorescence of the external HBSS at exitation/emission wavelengths of 541/572 

nm at regular time intervals for 3 h. The BSA concentration was determined using a standard curve 

covering the range of 0-50 µg/mL total albumin. The overall mass-transfer coefficient for diffusion 

across the capsule wall (K) was calculated by solving the differential equation obtained through 

an unsteady state mass balance on the external solution (Matthew, Salley et al. 1993).  

)( CCKA
dt

dC
V C        (1) 

MVCVNCVCVNC CCC   0     (2) 

Where: K is the overall mass transfer coefficient for membrane diffusion; M is the total mass of 

solute present in the cuvette (M = Cr (V+NVc)); V and Vc are the volume of external solution and 

volume of capsules, respectively; N is the number of capsules; A is the total surface area (A = 

N*surface area of single capsule); C is the concentration of solute in external solution; Co is the 

initial extracapsular concentration; Cc is the concentration of solute in the capsules; C∞ is the initial 
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intracapsule concentration; Cr is the final concentration after end of 3 hours; and t is time. The 

solution to the equations 1 and 2 yields, 

t
NVV

NVVKA
Q

C

C







 


)(
)ln(      (3) 

Where Q is a dimensionless concentration-dependent parameter defined as 

CNVVM

CNVVM
Q

C

C

)(

)( 0




      (4) 

The overall mass-transfer coefficient for transmembrane diffusion, K, was determined by plotting 

ln(Q) vs. time and determining the slope of the linear portion of the curve by linear regression. 

The intrinsic permeability, P, of each capsule wall was determined from the relation: 


P

K         (5) 

Where δ is the thickness of the capsule wall. 

5.4.2 Evaluation of mechanical integrity: Agitation 

An agitation system was designed to study the capsule wall integrity. A suitable power was 

fed to the system containing capsules suspended in an aqueous medium using a turbine agitator. 

The total number of unbroken capsules was then counted at regular time intervals. Using this 

technique, specific material components with higher influence over the other material components 

of the capsule wall were identified. The figure below shows the agitation system setup. We used a 

turbine agitator and accordingly the power number for the calculation are used. 
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Figure 18: Agitation system setup for capsule wall integrity. 

The formula used to calculate the total power fed was as follows:  

 

Power Analysis: ܲ ൌ 	 ௣ܰܦ௔
ହ݊ଷߩ 

N
Re 

(Reynolds Number)= 300 ோܰ௘ ൌ
஽ೌ

మ௡ఘ

ఓ
 

Da(Diameter of propeller)= 0.05 m 

ρ (Fluid Density)= 1,000 kg/m3 

n = Rotations per sec (r/s) 

μ (Fluid Viscosity)= 8.9 x 10-4 kg/ms 

Np = Power number (Exp. values) 

5.4.3 Methacrylation of HA 

 Hyaluronic acid is derivatized to make them photopolymerizable as described previously 

(Bencherif, Srinivasan et al. 2008). Briefly, 100X molar excess of glycidyl methacrylate 
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containing an epoxy ring was used to introduce unsaturated bonds in the hyaluronan chains in the 

presence of dimethylformamide (DMF) and triethylamine (TEA) (Figure:19). We were able to 

achieve 32% degree of Methacrylation. 

 

Figure 19: Methacrylation of Hyaluronan (HAGM – Hyaluronan-glycidyl methacrylate). Image 

reference:  Bencherif et al. Biomaterials 29 (2008) 1739-49 

 

Figure 20: Photopolymerizable capsule materials. 

These photopolymerizable capsule materials can be used to enhance the mechanical 

strength of individual capsules and to tune their rate of degradation in-vivo. They can also be used 
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as a tool to fuse the capsule during modular fabrication process (Figure: 20). This is particularly 

useful in applications that need a high mechanically stable structures. 

5.5 Results 

5.5.1 Capsule membrane permeability  

Results of the diffusion studies on encapsulated BSA are shown in Figure 6. A typical plot 

of the dimensionless concentration factor ln (Q) vs. time, for three replicates runs of the CSA/CMC 

capsule formulation is shown in Figure 21. The higher slope of the curve observed at early time 

points, is likely due to the rapid desorption of weakly bound albumin from the capsule wall. For 

our diffusion calculations, only the slope of the later, linear portion of the curve was used. Figure 

22 compares the values of the overall mass-transfer coefficient (K), permeability coefficient (P), 

and wall thickness (δ) for the two most stable capsule formulations (HA and CSA/CMC). As 

expected, the HA capsules exhibited ~3 fold higher permeability than CSA/CMC capsules due to 

the higher molecular mass of HA and its expected formation of a looser polyelectrolyte complex 

network with chitosan. However, the overall mass transfer coefficient which correlates directly 

with the overall rate of BSA diffusion from capsules was higher in the CSA/CMC capsules, mainly 

due to their thinner walls. Significant post-formation swelling was also observed in CSA/CMC 

capsules, which nearly doubled their initial diameter. No such swelling was observed with HA 

capsules. Overall, the results indicate that both capsule types are permeable to globular proteins of 

moderate size, and suggest that the permeability of the capsule wall might be further tunable via 

the molecular weight of the capsule materials. 
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Figure 21: Albumin diffusion profile of CSA/CMC capsules. Representative plots of the 

concentration factor ln(Q) vs. time for three replicate runs with the CSA/CMC capsule 

formulation. 
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Figure 22: Mass transfer characteristics of HA and CSA/CMC capsules. Plots of permeability 

coefficient (P), overall mass transfer coefficient (K) and wall thickness (δ) for the HA and 

CSA/CMC capsule formulations.  Error bars represent the standard deviation of three replicate 

measurements. 

5.5.2 Capsule membrane mechanical Integrity 

The mechanical integrity of four types of capsules were compared using our agitation 

system. Two molecular weight of CMC (mCMC: 250 kDa, hCMC : 700 kDa) and two molecular 

weights of chitosan were chosen (LC : 50-190 kDa,HC : >375 kDa) and four types of capsules 

were made using four possible combination of the materials. Capsules were carefully fed in to the 

agitation system and intact capsules were counted at 30 min time interval. The graphs were ploted 

as shown in figure 23. The results show that CMC has more influence over capsule integrity than 

chitosan, this shows that the molecular weight (MW) of the material components influence capsule 

mechanical strength. Therefore, MW helps to tune the physical and biological properties of a 

modular construct which makes our modular system very versatile. 
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Figure 23: Capsule wall integrity. Low Vs. High MW of Chitosan and CMC 

5.5.3 Photopolymerizable capsule materials 

 The capsules made out of HA and HAGM were subjected to mechanical agitation and 

total number of intact capsules were counted over time. As expected, the plots in figure 24 shows 

that photopolymerized HAGM stayed intact compared to normal HA. 
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Figure 24: Capsule wall integrity. Ha vs. HAGM capsules 

5.6 Summary and Discussions: 

The GAG-based microcapsules described above allow efficient mass transfer, which is 

evident from the high mass-transfer rates. In principle, diffusion challenges can be minimized by 

choosing the right biopolymer with specific molecular weight to ensure an adequate supply of 

nutrients and oxygen to all regions of the cell mass. Diffusion inside capsules can be further 

modulated by controlling the extent of cell distribution and aggregation.  Further, 

photopolymerizable capsule materials can be used to enhance the mechanical strength of 

individual capsules and to tune their rate of degradation in-vivo. They can also be used as a tool to 

fuse the capsule during modular fabrication process. This is particularly useful in applications that 

need high mechanically stable structures. 
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CHAPTER:	6	

SEEDING CELLS ON OUTSIDE WALL FOR VASCULARIZATION 

6.1 Introduction 

The important step in fabricating a modular construct is to embed a network of inter-

connected channels that can enable us to develop non-diffusion limited constructs. This is 

particularly helpful in case of thick constructs and constructs with high metabolic cells. In addition, 

the inter-connected channels can also be endothelialized to pre-vascularize the construct. 

Endothelialization of the channels can help promote rapid vascularization of the construct, upon 

transplantation in to a suitable host. This chapter details the process of rendering the outside surface 

of the capsules amenable for endothelial cell attachment and spreading. Simple ways to enhance 

the surface with receptors for endothelial cell attachment are discussed. The ability of seeded 

endothelial cells to form a monolayer and express tight junction proteins were also elucidated. 

Finally, the functional influence of the endothelial cells on the growth and proliferation of 

parenchymal cells on the inside of the capsules were also analyzed.   

6.2 Aim and Rationale 

The specific aim of this chapter is to modify the outside surface of capsules to 

accommodate endothelial cells. The rationale of this specific aim is that this will enable us to 

promote vascularization of the tissue constructs assembled using microcapsules and reduces 

thrombogenesis of blood contacting surfaces. This will enable us to achieve efficient diffusion and 

this can reduce necrosis in long term cultures. Regulatory mechanism and functional relationship 

between different cell types can also be reproduced by achieving this specific aim. This 
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prevascularization technique may also promote diffusion and nourishment by integrating with the 

host vasculature post implantation. 

6.3 Experimental approach:  

Study 1: Endothelial cells were seeded on outside capsule wall integrated with proteins. 

Endothelial cells were seeded on the outside wall of the microcapsules and cell adhesion, 

proliferation and migration were monitored using phase contrast microscopy, histology and 

immunohistochemistry. 

Study 2: Endothelial cells were seeded on outside wall coated with collagen, and bovine serum 

proteins. The microcapsules were washed with ECM polymers like collagen or other cell adhesion 

supporting biopolymers like gelatin and endothelial cells were seeded on them. Cell adhesion, 

proliferation and migration were monitored over time using phase contrast microscopy, histology 

and immunohistochemistry. 

6.4 Material and Methods 

Cell adhesion, proliferation and migration were monitored over time using phase contrast 

microscopy, histology and immunohistochemistry. 

6.4.1 Endothelial cell seeding on capsule surfaces 

Capsules were coated with an adsorbed layer of Type I collagen prior to externally seeding 

endothelial cells. For coating collagen on the outer surface, non-surface stabilized capsules (i.e. 

capsules without a PGA final wash) were washed in dilute acidic collagen solution (0.2 mg/ml of 

collagen in 1 mM acetic acid) for 1-2 min and then equilibrated with culture medium for 30 mins. 
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Capsules that had been previously surface stabilized with PGA, were first washed with dilute 

chitosan solution (0.06% chitosan) prior to the dilute collagen wash. The equilibration culture 

medium was then removed and an endothelial cell suspension (HUVECs or AECs) in medium was 

added to settled capsules in a 50ml centrifuge tube. Cells were seeded at a density of 106 cells per 

ml of capsules and incubated at 37°C for 60 minutes with gentle resuspension every 10 min. After 

incubation, the seeded capsules were transferred to bioreactor chambers or tissue culture dishes 

for further experiments. 

6.5 Results: 

6.5.1 Endothelial cell growth on capsule surfaces 

The growth of sheep aortic endothelial cells (AEC) and HUVECs was investigated by 

seeding these cells onto the outside surfaces of CSA/CMC capsules. Endothelial cells attached 

poorly to surface stabilized capsule surfaces. However, their attachment and growth greatly 

improved when type-I collagen was coated onto the outer surface of the CSA/CMC capsules.  

HUVECs seeded on the collagen coated CSA/CMC capsules attached well and formed a viable 

monolayer within 24 hours of seeding (Figure 25). SEM images of capsules fixed 1 hour post-

seeding (Figure 26B) showed a continuous, but irregular monolayer of cells in varying stages of 

spreading. SEM images 24 hours after seeding showed a well spread and smooth endothelial 

monolayer, with few areas of exposed capsule surface (Figure 26C). This morphology was 

maintained for at least 14 days under static culture conditions.  
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Figure 25: Capsules coated with collagen formed HUVEC monolayer with tight junctions. 

This method has potential to vascularize the construct made by assembling these capsules. 

Although these EC layers didn’t structurally match with the native vascular structure, they are 

expected to fasten the process of neovascularization and reduce thrombosis.   

 

Figure 26: SME images of HUVEC monolayer with tight junctions. 
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6.5.2 Functional influence of endothelial on parenchymal cells 

Regulatory mechanism: There are many studies explaining the regulatory mechanism and 

functional relationship that exist between different cell types especially between vascular and 

parenchymal cell types. Both proliferating and quiescent vascular endothelial cells (VECs) are 

shown to promote series of reactions that enhances SMC proliferation in a SMC/VES coculture 

system. Here we designed a similar coculture system using microcapsules, by encapsulating SMCs 

in HA capsules with collagen matrix and seeding VECs on the outside of the capsules. We 

compared these cocultured capsules with capsules that were seeded with SMCs on the inside but 

lacking VECs on the outside. After two days of culture, cocultured capsules had larger aggregates 

compared to those of the control system and this is more pronounced by the end of first week (Fig 

27). This suggests that this method of coculturing of cells in the capsule system can be utilized to 

enhance SMC proliferation during maturation of modular constructs and simultaneously 

vascularize the construct after assembly 

6.6 Summary and Discussions: 

In summary, we have demonstrated that the outer surface of the capsule wall can be 

modified with collagen to provide suitable surface for endothelial cell to attach and proliferate. 

Washing the outer surface with collagen also enhanced cell adhesion and migration and resulted 

in the formation of an endothelial monolayer. Also the HUVEC monolayer exhibited tight junction 

markers as commonly exhibited by the endothelium of the blood vessels. This is essential to render 

the surface non-thrombogenic and simultaneously can accelerate vascularization in-vivo. 

Culturing SMCs with VEC also promoted SMC proliferation which is evident from larger 

aggregates and proliferation assays. This suggests that the capsule membrane is permeable and can 
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support paracrine signaling seen in vivo. Hence, the endothelial cells seeded on the modified 

outside surface has significant functions including endothelialization, enhanced perfusion, and 

functional influence on the encapsulated parenchymal cells. 

.  

Figure 27: Cell growth in encapsulated cocultures of SMC and AEC. Cocultures of 

encapsulated SMCs with AECs on the external surfaces of HA/Collagen capsules exhibited 

increased SMC proliferation compared to encapsulated SMC monocultures. (A) Encapsulated 

SMCs only, day 7. (B) Encapsulated SMC with AECs, day 7.  
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CHAPTER:	7	

MODULAR FABRICATION 

7.1 Introduction: 

The specific aim of this chapter is to develop methods for assembling 3D constructs. 

Compared to the conventional tissue engineering method, which is essentially a top-down 

approach, modular tissue engineering is a bottom-up approach, in which a tissue is fabricated by 

assembling discrete modules containing parenchymal and vascular components. This chapter 

explains the process and merits of this bottom-up assembly. The fabrication methods were 

developed to make self-supporting structures while keeping the inter-connected channels intact. 

Different ways to tune the inter-capsular spaces and overall cell density were also elucidated.  

7.2 Aim and Rationale:  

The objective of this specific aim is to develop methods for fabricating 3D constructs 

through the assembly of microcapsules. The rationale is that this modular fabrication strategy will 

recreate the modular architecture of natural organs that can facilitate optimal performance and 

development of the bioartificial construct by maintaining their native structure. This modular 

fabrication approach will also promote stability, reduce interdependency among different 

components of the construct and facilitate more control in engineering fine microstructure details 

of constructs. 
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7.3 Experimental approach:  

Study 1: Self-supporting constructs were made by fusing microcapsules reloaded with biopolymer 

solution.  

Microcapsules seeded with cells were reloaded with suitable anionic biocompatible polymer and 

fused with each other ionically using another cationic polymer like mild acidic chitosan to from a 

self-supporting construct. Histological analysis was performed to study porosity, capsule 

arrangement and strength of the construct was also determined. 

Study 2: Chitosan membranes were used for capsule-fabrication to provide additional support. 

Membranes made of chitosan with appropriate thickness may also be used as a means of support 

to fabricate constructs with desired structure. Histological analysis was performed to study 

porosity, capsule arrangement and strength of the construct was also determined. 

7.4 Materials and Methods  

Analysis criteria: Capsule arrangement in the fabricated construct, strength and porosity 

of the 3D construct were analyzed. Capsule arrangement and porosity is important to enable a 

network of interconnected, endothelial cell-lined channels to facilitate vascularization and mass 

transport. Histological evaluation were performed to analyze the above mention criteria. Scanning 

electron microscopy was also be used to determine the porosity and capsule arrangement. 
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7.4.1 Assembly of non-surface stabilized capsules  

Individual capsules were fused into 3D constructs in one of the two ways. In the first 

method, freshly formed capsules were fused by allowing them to sit in contact with each other 

after the second saline wash, but before the surface stabilizing PGA wash. Freshly formed capsules 

were washed once with normal saline and then transferred in saline to a cylindrical mold with a 

250 micron mesh at the base. Capsules were allowed to settle within the mold and held stationary 

for 2-3 minutes to allow inter-capsule adhesion. The excess saline was then drained and the capsule 

surfaces in the fused construct were then stabilized by briefly rinsing with saline, followed by a 

diluted polyanion solution (i.e. 0.1% PGA or 0.4% CSA/0.15% CMC), followed by a final PBS 

rinse.  

7.4.2 Assembly of modular constructs by perfusion 

In the second fusion method, previously stabilized and cultured capsules were first reloaded 

with a polyanion by incubation in a diluted polyanion solution (0.1% heparin or 0.4% CSA/0.15% 

CMC). The capsules were then transferred to a cylindrical mold with the mesh base. After draining 

excess polyanion solution, the mold with reloaded capsules was perfused with 0.06 wt% chitosan 

solution to ionically fuse the capsules. Excess chitosan solution was drained, the capsules were 

rinsed with normal saline and surface stabilized by a brief perfusion with a dilute polyanion 

solution. The fused modular construct was then removed from the mold for further culture or 

analysis. 
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7.4.3 Imaging of interconnected channels. 

For long-term tracking of HUVECs on capsules and fused capsule constructs, CellTracker™ 

Green CMFDA (Invitrogen) was used. Briefly, adherent cells were rinsed with PBS and incubated 

in a serum free culture medium containing 5 µM CellTracker Green probe for 45-60 min. After 

the incubation the medium was replaced with pre-warmed normal medium and incubated for 

another 30 min for the dye to undergo modification due to intracellular esterases. The cells were 

then trypsinized and seeded onto capsule outer surface. Cell fluorescence was then observed using 

wide-field fluorescence microscopy and laser scanning confocal microscopy (Zeiss LSM-410). 

7.5 Results: 

7.5.1 Assembly of capsule modules  

Assembly of capsules into three-dimensional modular constructs is a critical step in our 

modular tissue engineering approach to generate vascularized tissue. We investigated various 

methods for assembling larger 3D constructs from pre-cultured individual capsules. The most 

successful method involved reloading cultured capsules with a polyanion, followed by perfusion 

with a diluted polycation solution. Outward diffusion of reloaded GAG during the polycation 

perfusion step deposited a polyelectrolyte complex that effectively fused capsules together around 

points of contact. This method yielded self-supporting structures with interconnecting, perfusable 

spaces as shown. 
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Figure 28: Modular assembly of GAG based microcapsules by fusion. 

 

Modular constructs were fabricated by perfusing packed capsules in a chamber of desired 

dimensions with diluted polymer solutions. This method yielded self-supporting constructs with 

uniform porosity (Figure 28, 29). (A) Individual capsules in buffer solution before fusion. (B) 

Capsules being perfused with polymer solution in a perfusion chamber. Arrow indicates direction 

of flow. (C) Fused construct after removal from perfusion chamber.  

 

Figure 29: Self supported and Membrane supported structures 



66 

 

The capsules formed self-supporting stable modular structure and no structural 

deformation were seen at least for 24 hours (Fig 29). The modular constructs made with additional 

support from chitosan membranes were more stable with a smooth lumen (29).  

Capsules that were surface-seeded with HUVECs and subsequently fused showed well 

endothelialized, interconnected channels as seen in phase contrast (Figure 30A) and confocal 

images (Figure 30B). SEM imaging of an axial section through a fused construct shows the 

interconnected channels more clearly (Figure 30C).  

 

Figure 30: Endothelialized, interconnected channels in a fused modular construct. 

(A) Phase contrast image of CSA/CMC capsules, seeded externally with HUVECs and fused 48 

hours after seeding. (B) Combined confocal image stack of the modular construct shown in A with 

HUVECS visualized via CellTracker Green staining. (C) SEM image of an axially sectioned, 

modular construct assembled from fused empty capsules showing interconnected channels. 

7.5.2 Tuning Cell density and inter-capsule space  

In a modified procedure, fusion-based assembly of high cell density capsules was explored 

by encapsulating primary rat hepatocytes in HA-collagen capsules at a density of 10x106 cells/ml 

of the HA/collagen solution, followed by heparin reloading, and centrifugation for 10 seconds at 
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50G to expel excess intracapsular liquid. H&E stained sections of the resulting construct showed 

a dense cell mass (~5x107 cells/cm3, estimated via image analysis) with reduced, but still 

significant intercapsule spaces (Figure 31 A-B). Encapsulated hepatocyte constructs assembled 

without centrifugation showed a much less dense cellular construct (estimated at 9x106 cells/cm3 

via image analysis) with more and larger intercapsule spaces (Figure 31 C-D). These results 

demonstrate that additional physical processing methods can be used to further adjust the effective 

cell density and perfusable void space within these modular constructs.  

 

Figure 31: H&E staining of modular constructs based on hepatocytes in HA/collagen 

capsules. (A, B). Fused construct with reduced fluid volume and porosity due to centrifugation of 

capsules during the fusion process. (C, D) Construct formed by fusion of capsules settled under 

unit gravity, resulting in significantly greater fuid volume inside capsules and larger intercapsular 

spaces suitable for perfusion culture. 
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7.6 Summary and Discussion: 

In summary, we have demonstrated that capsules can be fused to form stable 3D structures 

with or without membrane support. Fusion of the endothelialized capsules generated 3D constructs 

with an embedded network of interconnected, endothelialized channels that can support long-term 

perfusion in vitro and vascularization in vivo. After the fusion of the capsules, the endothelial cell 

layer on the outside of the capsules stayed intact and all the endothelial cells remained viable. The 

interconnected channels in the 3D construct also remained open after the fusion that involved 

reloading and perfusion of GAG and chitosan respectively.  

The long term effects due to acidic chitosan wash, on the performance of the endothelial 

cells still need to be studied. The state of the endothelial monolayer after fusion, also need to be 

investigated as quiescent phenotype is more preferred for vascularizing our constructs and a 

proliferative phenotype may lead to pathophysiology. The SEM and histological data suggest that 

the inter-capsular space is available in our fused constructs for perfusion of medium or blood. The 

fusion protocol can also be used to control the cell packing density in our constructs. We have 

demonstrated that our fusion protocol can be modified to pack the capsules at higher cell densities 

that can be of clinical significance. Overall our fusion protocol yielded stable 3D constructs with 

tunable intercapsular space and cell densities. 
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CHAPTER:	8 

IN-VITRO PERFUSION CULTURES 

8.1 Introduction 

Microvasculature of native tissues exhibit well defined structures such as basement 

membrane, lumen and functional biomarkers that are presented in a spatial architecture that 

supports tissue function. Traditional methods for recreating this microarchitecture fall short of the 

aforementioned basic requirements, as attempts to seed endothelial cells on the open channels in 

scaffolds resembles very less of the native vessel structure, and diffuse seeding of endothelial cell 

suspension enable limited interconnected vessel formation. Hence, there is a need for technologies 

to embed an intrinsic vasculature in an engineered tissue to enhance cell viability and tissue 

functionality.  

Our goal is to improve the viability and thereby the functionality of an engineered tissue 

by enhancing its vasculature. We relied upon microfabrication techniques developed in our lab to 

fabricate tissue constructs with interconnected channels that resembles spatial architecture of 

native tissue vasculature. Perfusion bioreactors enable us to overcome the diffusion limitations 

associated with the preformed porous scaffolds. In addition, the flow mediated shear can induce 

mechanical stimuli that have functional consequences. For instance, the hydrodynamic shear at 

physiological range can render the endothelial cells non-thrombogenic and hence enhance its 

functionality as flow channels for blood. We proposed a method of fabricating vascularized 

constructs by fusing cell laden microcapsules as described in the previous chapters 

(Tiruvannamalai-Annamalai, Armant et al. 2014). Here, we analyzed various controllable 
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parameters experimentally and analytically with the aim of predicting the usable limits of our 

modular scaffolds in maintaining tissue density cultures. 

8.2 Aim and rationale: 

The specific aim of this chapter is to develop design parameters for maintaining hepatocyte 

and endothelial cells in perfused modular constructs by testing our cell seeded 3D fused modules 

with their interconnected channels for long-term perfusion. The hypothesis is that these 

interconnected channels can increase the perfusion of blood or medium which in turn will enhance 

the efficiency of the tissue constructs by increased supply of oxygen and nutrients to the cells 

compared to that of a porous scaffold. In this chapter major design parameters such as flow rate, 

shear stress, pressure drop and mass transfer rates were used to predict the optimal operating 

conditions of our modular constructs in a perfusion bioreactor. Using the calculated values, the 

system was operated and the metabolic performance of encapsulated hepatocytes was tested. The 

performance of the interconnected channels in our modular constructs was validated by comparing 

the metabolic data of the perfusion cultures to that of the standard sandwich cultures.  

8.4 Experimental and design approach: 

8.4.1 Design and fabrication of the bioreactor: 

System description: Packed bed bioreactor system with spherical aggregates with following 

parameters: Dr = Diameter of the packed bed, Dp = Diameter of the aggregates/capsule, Lc= 

Length/Height of the construct, µ = Viscosity at 37oC (Culture medium= 0.692*10-3 kg/m.s), ρ = 

Density at 37oC (Culture medium = 993 kg/m3), ε = Void fraction of the bed (0.4 - standard for 

bed with spherical particles). This may also be found experimentally by pressure drop calculations. 
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The following derivations are for a cylindrical packed bed chamber and can be used for rectangular 

chambers with similar cross section area with uniform flow. 

 

Figure 32: Schematic representation of our perfusion bioreactor 

Design Constraints: Fluidized/Packed-bed perfusion culture 

1. Shear Stress to maintain endothelial physiology: 5-20 dynes/cm2  

2. Oxygen depletion to prevent hypoxia: >60μM dissolve O2 conc. 

3. Pressure drop <100 mmHg to prevent bed compaction. 

4. Maintain laminar flow to maintain endothelial quiescence: NRe<20 
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8.4.1 Modelling flow conditions 

8.4.1.1 Flow characterization:  

The Reynolds number for the flow inside the packed bed was used to determine the flow 

characteristics in our packed bed system.   

ோܰ௘ ൌ 	
ௗ೛ఘ௏ᇲ

ஜሺଵିఌሻ
 (1) 

Where, µ = Viscosity at 37oC (Culture medium= 0.692*10-3 kg/m.s), ρ = Density at 37oC (Culture 

medium = 993 kg/m3), ε = Void fraction of the bed (0.4 - standard for bed with spherical particles). 

This may also be found experimentally by pressure drop calculations and V’ = Superficial velocity 

= Total flow rate per unit cross-section areaቀܸ’ ൌ ସொ

గ஽ೝ
మቁ. 

ோܰ௘ ൌ 	
	ସ	ௗ೛ఘ	ொ

ஜ	గ	஽ೝ
మሺଵିఌሻ

  (2) 

Where, Q = flow rate in ml/min, Dr = diameter of the perfusion chamber or the modular construct. 

The Reynolds number for the flow with capsules of 500-1000μm in dia is calculated and found to 

be NRe = 0.12 @ 20 dyn/cm2 shear stress. For all the other conditions of shear < 20 dyn/cm2 and 

dia <200μ the Reynolds number of the flow is below NRe < 0.12. Hence, flow is considered laminar 

in all the following plots. Since, NRe is very low, the convective terms are negligible and the shear 

stress is linearly related to the imposed inlet flow rate. 
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8.4.1.2 Shear stress  

The flow of blood on the endothelial surface is generally considered as Newtonian except 

at very low shear rates (Barakat and Lieu 2003). The hemodynamic stress due to blood flow 

exposes the endothelial cells to shear stress (τ), hydrostatic pressure (p) and tensile stress (σ). Wall 

shear stress is the most important of the mechanical stress forces that is known to impact the 

endothelial physiology extensively (McCormick, Eskin et al. 2001). Some of the shear stress 

responsive phenomenon include angiogenesis, regulation of vascular tone, thrombosis and 

modulation of immune response (McCormick, Eskin et al. 2001, Ohura, Yamamoto et al. 2003). 

Depending on the diameter of the blood vessels, the endothelium experiences unidirectional shear 

stress in the range of 5-20 dyn/cm2 due to blood flow. They express adaptive response to these 

hemodynamic stimulus in many ways such as by cell alignment, increasing mechanical stiffness, 

and expressing genes to promote anti- thrombogenicity. Hence, maintaining the shear stress in this 

range in our modular system can be beneficial to maintain the endothelial physiology. Therefore, 

we considered this limit as the set points for the endothelial cells in our modular constructs and 

analytically defined the other controllable parameters such as flow rate, module diameter and 

porosity. The equations for the analytical calculations are derived as follows. 

Blake-Kozeny equation for laminar flow (Geankoplis 2003) through a porous scaffold with 

cylindrical interconnected channels is given by,  

ܲ߂ ൌ 	
ଵହ଴ஜ௏’௅೎ሺଵିఌሻమ

ௗ೛
మఌయ

  (3) 

Where, LC = Length of the construct, void fractions less than 0.5, effective particle diameter dp, 

and NRe,p<10. In order to find the relaton between flow rate and shear stress, the pressure loss was 
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derivated as follows. pressure difference across a straight, cylindrical channel, of diameter Dp, was 

related to shear stress τ by: 

ܲ߂ ൌ
ସఛ௅

஽೛
  (4) 

The equation (4) was modified to account for the rhombohedral nature of the interconnected 

channels in our modular construct containing spherical modules (Niven 2002). Hence hydraulic 

radius RH is considered for the non-circular conduits of our modular construct (Avgoustiniatos and 

Colton 1997). Hydraulic radius RH, or characteristic dimension of the porous medium, is the ratio 

of the volume of voids (Vv) to their surface area (Av). 

௣ܦ ൌ
௏ೡ
஺ೡ
ൌ

௏ೡ ௏೅⁄

஺ೡ ௏೅⁄
ൌ

ఌௗ೛
଺ሺଵିఌሻ

  (4) 

Where, VT the total volume of the packing, and dp the diameter of a spherical modules. Clearly, 

represents RH obtained by integrating the area and wetted perimeter over the length of the conduit. 

Vv=VT as the porosity, whilst Av=VT is the product of the surface area of a single particle, Ap = 

πdP
2, multiplied by the number of particles per unit volume, N =[(1 − Vv)/Vp]/VT = 6(1 −ε)=πdp

3. 

This formulation assumes infinitesimal points of contact between solid particles, and the absence 

of dead pores which do not experience flow. 

ܲ߂ ൌ 	
ଵହ଴ஜ௏ᇲ௅೎ሺଵିఌሻమ

ௗ೛
మఌయ

ൌ
ସఛ௅	଺ሺଵିఌሻ

ఌௗ೛
  (5) 

߬ ൌ 	
଺.ଶହ	ஜ௏ᇲሺଵିఌሻ

ௗ೛ఌమ
  (6) 
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V’ = Superficial velocity = Total flow rate per unit cross-section areaቀܸ’ ൌ ସொ

గ஽ೝ
మቁ. 

ܳ ൌ
ఛௗ೛ఌమ஠஽ೝ

మ

ଶହஜሺଵିఌሻ
  (7) 

8.4.1.3 Mass transfer rates: Oxygen Uptake rates 

Mass transfer rates of oxygen and its requirement by cells in a cylindrical modular 

construct is calculated by a simple mole balance on oxygen as follows. A steady-state mole balance 

on oxygen in the modular construct perfused with medium at a flow rate of Q, as it enters, leaves, 

and up taken in a differential cylindrical element dz of radius R and length Lc (along the z 

directions) is given by: [Rate in] – [Rate out] = [Rate of consumption of O2]; 

െܳ ׬
ௗ஼ೀమ
ௗ௭

௬ା∆௬
௬ ൌ ௖ሺ1ߩܴܷܱ െ  (8)  ܣሻߝ

Where, OUR= Oxygen uptake rate/ single cell, ρc = Density of cells per unit volume = Total 

number of cells/Volume of construct. Integrating equation (8) over the limits y and y+Δy gives 

ܳ ൌ 	
ை௎ோ	ఘ೎ሺଵିఌሻ	గ	஽ೝమ	௅೎	

ସ	ሺ஼ೀమ
಺೙ି	஼ೀమ

ೀೠ೟	ሻ
  (9) 

OUR = 4x10-16 mol/cells per s (Rotem, Toner et al. 1992). This serves as the upper limit for any 

cell type. Cin = 200µM (Dissolved oxygen concentrating in blood at the inlet), Cout = 65µM 

(Dissolved oxygen concentrating in blood at the outlet). 

Table 3: Assumptions for the modelling 
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Parameters: Value Unit 

Oxygen Uptake Rate (OUR)-Hepatocytes. Vm at K0.5 4*10-16 Mol/cell/s(Rotem, Toner et 

al. 1992) 

Lowest Oxygen partial pressure in human body 58/65 mmHg/uM 

Oxygen partial pressure in Air (21%-7.6mg/lit of water) 105/200 mmHg/uM 

Void Fraction ε 0.4±0.1 No Unit 

Medium Viscosity µ 0.007 dyn.s/cm^2 

 

8.4.1.4 Mass Transfer Rate in Capsules: 

The dimensionless concentration parameter called the Thiele modulus which is a measure 

of the rate of oxygen consumption relative to the rate of oxygen diffusion in the tissue matrix 

compartment is used to calculate the necrotic radius of our spherical aggregates. A modified form 

of  Thiele modulus for a cell based system is defined previously (Avgoustiniatos and Colton 1997) 

as shown in equation (10). When the Thiele modulus for a spherical system is large, internal 

diffusion usually limits the overall rate of reaction; when it is small, the surface reaction is usually 

rate-limiting.  

߶௠
ଶ ൌ ቀ௏௛

మ

ఈ஽
ቁ ଵ

௱௉ೇ
 (10) 

Dimensionless length 

ξ ൌ 	
ܴ଴
ܴ௦

ൌ 0 
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ϕm -Thiele Modulus 

ξ - Dimensionless length 

R0- Radius  

V- Rate of oxygen consumption per unit volume 3.2 (l.1)*10-8 mol/cm3.s 

h – Half thickness or the radius of the aggregate 

α - Bunsen solubility coefficient of oxygen (=1*10-9 mol/cm3.mmHg) 

D – Diffusion coefficient of oxygen (=1.3(±0.2)*10-5 cm2/s) 

ΔPv – Drop in oxygen partial pressure across the thickness r=vi 

߶௠
ଶ ൌ ቆ

ܸ݄ଶ

ܦߙ
ቇ

1
߂ ௏ܲ

 

A‐ is a function of the permeabilities and thicknesses of the various layers. 

For multiple layers: 

For no necrotic core, the dimensionless length ξ ൌ 	 ோబ
ோೞ
ൌ 0 
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ܸ
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The effectiveness factor (η) is the ratio of the reaction rate to the rate of reaction in the absence of 

internal mass transfer limitations. Its magnitude ranges from 0 to 1, and it indicates the relative 

importance of diffusion and reaction limitations. The effectiveness factor was calculated for the 

first order kinetics as explained previously (Fogler 2005).  
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If ϕ>2 then 

ߟ  ൌ 	
ଷ

థ೘
మ ሾ߶௠ െ 1ሿ 

8.4.2 Perfusion culture of encapsulated hepatocytes: 

Encapsulated primary rat hepatocytes (encapsulation density: 20x106 cells/mL of 

CSA/CMC) were maintained in perfusion cultures under both packed bed and fluidized bed 

conditions as previously described (Matthew, Salley et al. 1993, Surapaneni, Pryor et al. 1997). 

For fluidized perfusion, non-fused capsules were fluidized by a continuous upward flow of the 

culture medium in a cylindrical chamber within a continuous circulation flow circuit. For the 

packed bed cultures, the capsules were fused in a cylindrical flow chamber as described above and 

subjected to a downward flow of the medium in a continuous circulation flow circuit. Medium 

exiting the culture chamber was oxygenated using a silicone tubing oxygenator (supplied with 

95% air/5% CO2) and recirculated using a peristaltic pump. The flow rates were adjusted to 

maintain physiological pressure differences (<100 mmHg) across the chamber (4-5 mL per 

minute). The perfusion system was maintained at 37C for 1-2 weeks and medium was changed 

every 2-3 days. Medium samples were collected daily for evaluation of urea and albumin synthesis 

by the hepatocytes. 

8.4.3 Analysis of albumin and urea synthesis: 

Standard methods for measuring albumin and urea production rates were used to assess 

hepatocyte function. Culture medium collected from collagen sandwich cultures and perfusion 

bioreactor cultures at regular intervals was analyzed for rat serum albumin by ELISA with purified 
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rat albumin (Sigma) and a peroxidase conjugated anti-rat albumin antibody (Bethyl). Urea 

production was quantified using the diacetylmonoxime method as previously described (Wybenga, 

Di Giorgio et al. 1971). Standard curves for both quantification techniques were generated using 

purified rat albumin or urea dissolved in culture medium. Absorbances were measured with a 

Spectramax 

8.5 Results  

8.5.1 Design Parameters 

 

Figure 33: Flow rate required to impose a specific shear stress on the surface on the aggregated 

with various diameter (50-200 μ). Void fraction is kept constant at 0.4.  
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The Reynolds number for the flow with aggregates of 200μ in dia is NRe = 0.12 @ 20 

dyn/cm2 shear stress. For all the other conditions of shear < 20 dyn/cm2 and dia <200μ the 

Reynolds number of the flow is below NRe < 0.12. Hence, flow is considered laminar in all the 

following plots. Fig.33 shows the flow rate required to impose a specific shear stress on the surface 

of the capsule with various diameter (50-200 μ). Void fraction is kept constant at 0.4. 

8.5.2 Minimum flow rate to meet O2 need 

 

Figure 34: Change	in	minimum	flow	rate	required	to	supply	enough	oxygen	for	constructs	

with	different	length.		

Dr = Diameter of the packed bed (1mm), Dp = Diameter of the aggregates/capsule (100 μ), Lc= 

Length/Height of the construct, Cell density: 10, 25 and 50 Million cells/cm3. Assumptions: Upper 

limit of oxygen concentration: 135 μM, Lower limit of oxygen concentration: 65 μM (Outlet 
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concentration for the bioreactor). Oxygen uptake rate of hepatocyte = 4*10-16 mol/cell/s (1/2 

VMax). Fig.34 shows the change in minimum flow rate required to supply enough oxygen for 

constructs with different length. The colored lines denotes three different constructs with different 

cell densities. 

8.5.3 Mass Transfer within a Capsule 

 

Figure 35: Mass Transfer within a Capsule. Thiele modulus analysis used to calculate maximum 

non-hypoxic capsule radius: 

Thiele modulus analysis used to calculate maximum non-hypoxic capsule radius. The 

calculations shown in figure 35 shows that the higher cell densities reduce the maximum non-

hypoxic capsule radius and capsule wall has minimal effect on the overall mass transfer. More 

importantly, capsule with 200µ radius can efficiently maintain hepatocytes at cell density of liver. 
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8.5.4 Bioreactor operation limits 

 

Figure 36: Shear stress range that ensures enough oxygen supply 

The above calculations show that the flow will be laminar in the packed bed bioreactors at 

all ranges of physiological shear stress with capsule diameter less than 200 μ in diameter (arbitrary 

limit). The required operating flow rates (for a 5mm long construct and 1mm in dia) based on mass 

transfer limits are far below the flow rates required to satisfy physiological shear stress limits. The 

compaction characteristics of the capsules need to be tested experimentally to impose pressure 

drop constraints in the calculation. Overall, with flow rates at the physiological shear stress range, 

the bioreactor can maintain cell capsules with at least 15% liver cell density (50M cells/cm3) 

without any necrosis.    

8.5.5 Perfusion culture dynamics 
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Figure 37: Perfusion culture dynamics of encapsulates hepatocytes. 

 There was a slow albumin production initially followed by an exponential increase and 

finally a lag phase. The initial lag in the albumin production can be attributed to the initial 

adaptation time required for the newly seeded cells in our GAG microcapsules. Once the cells 

overcome the initial shock, they show an exponential increase in the albumin production rates at 

the same time forms larger aggregates. The formation of larger aggregates introduces diffusion 

limitation in to the system that results in the decrease in the albumin production rates as seen in 

the figure 37. 

8.5.6 Metabolic performance of hepatocytes in modular constructs 

The metabolic performance of encapsulated primary rat hepatocytes maintained in 

perfusion culture conditions (Figure 38) was evaluated by measuring urea and albumin synthesis 

rates and comparing to rates of identical cells in standard collagen sandwich dish cultures. 



84 

 

Perfusion cultures maintained the functionality of encapsulated hepatocytes and healthy spheroids 

were seen in most capsules (Figure 38B). Albumin and urea synthesis rates in both types of 

perfusion cultures (Figure 39 C-F) approached those of the collagen sandwich cultures (Figure 39 

A-B).  

 

Figure 38: Primary rat hepatocytes were encapsulated in CSA/CMC capsules with a with 1 mg/ml 

collagen gel, at a density of 2x107 cells/ml of CSA/CMC/collagen solution. (A) Control collagen 

sandwich dish culture. (B) Encapsulated hepatocytes aggregated into spheroids during culture as 

either (C) individual capsules in a fluidized bed bioreactor, or as a (D) fused modular construct in 

a packed bed bioreactor. 
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8.6 Summary and Discussion 

The urea and albumin synthesis rates of the perfused cultures indicate that mass transfer 

rates were sufficient to maintain the encapsulated hepatocytes in our modular constructs. Thus, the 

interconnected endothelialized channels may provide a foundation for a vascular network and 

thereby accelerate the process of neovascularization by anastomosing with the host vasculature 

post-implantation. Thus, the fusion of the endothelialized capsules generated 3D constructs with 

an embedded network of interconnected channels that enabled long-term perfusion in-vitro. 
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Figure 39: Albumin and urea synthesis rates of hepatocytes in encapsulated perfusion cultures. 



87 

 

 (A-F) Albumin and urea synthesis rates by the hepatocytes in the three culture conditions. (A,B) 

Control collagen sandwich cultures. (C-F) Perfusion cultures. Error bars denote standard 

deviations from 3 replicate measurements.  
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CHAPTER:	9	

ASSESSMENT OF VASCULARIZATION IN-VIVO 

9.1 Introduction 

In spite of the enormous scientific knowledge on biomaterials and tissue scaffolds, it is 

implausible to accurately predict the in vivo response to implanted tissue constructs based solely 

on in-vitro cultures techniques.  Thus, it is widely recognized that in-vivo testing is necessary to 

investigate the biological responses such as neovascularization and angiogenesis of implantable 

material constructs as well as to identify wide range of host interactions with the implanted 

material. In our in-vivo study we tested the effectiveness of our method of modular fabrication by 

implanting small, multilayered tissues assembled using the method described in the previous 

chapters. The implanted tissue was imaged using magnetic resonance imaging (MRI) at 7 day 

intervals and was recovered at the end of week-3 and examined for material break down, formation 

of new blood vessels, and organization of the tissue cells. 

9.2 Aim and rationale 

Specific aim is to determine the effects of module endothelialization on vascularization of 

constructs in vivo. The objective of this specific aim is to investigate the rate and extent of 

vascularization of 3D constructs in a rat model by implanting them into subcutaneous pocket and 

doing histological analysis of the recovered explant at different time points. This will validate the 

feasibility of our technique for clinical applications. Our hypothesis that modules permeated by a 

network of interconnected, endothelial cell-lined channels can facilitate extensive vascularization 

and mass transport will also be tested in this animal study 
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9.3 Experimental approach 

Small modular constructs of suitable dimensions made using our fabrication technique 

were implanted in subcutaneous pockets of SCID mice. Surgical implantation procedures include 

blunt dissection and direct injection of microcapsules into subcutaneous pockets. The surgical 

procedure were optimized in order to minimize incision related injuries and structural damage to 

the implanted modules.  

9.4 Materials and Methods 

Analysis criteria: Host cell infiltration, interactions between host-implant anastomoses, 

host immune response and apoptosis were evaluated quantitatively. Implant and surrounding tissue 

were recovered at different time points and following histological procedures and assays were 

performed: H&E, Masson’s Trichrome, TUNEL, and Immunohistochemistry. Cell specific 

markers were used to identify cell type in the recovered explant. This will also enable us to quantify 

the extent of vascularization in the explant. If necessary GFP positive cells may be used in order 

to differentiate between host and implanted cells. 

9.4.1 Subcutaneous implantation in mice 

All the implantation surgeries were performed in a sterile hood located in one of the WSU 

animal care facility.  The stainless steel surface of the hood was cleaned with Spor-Klenz™ 

sterilant and one mouse was anesthetized at a time using Isoflurane inhalant (1 – 3% (up to 5% for 

induction). A 2 cm2 area of the dorsal skin (subcutaneous implants) was shaved. After shaving, the 

hood surface area was re-cleaned and sterilized with fabric sheet soaked in Spor-Klenz™. The 

shaved surgical site was prepared according to the Survival Surgery in Rodents SOP provided by 
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WSU DLAR. Mice was positioned on sterile dressing pads for the procedure. PuralubeTM was 

applied onto the eyes to prevent drying of conjunctive during the procedure. With round-tip 

forceps, dorsal skin was lifted at the center point between the hip joints. A 1.2-1.4 cm transverse 

incision was made in the dorsal skin using sterile instruments to make a subcutaneous pocket. Our 

modular scaffolds fabricated as previously described was inserted through this 1.2 cm incision, 

which was then closed using non-absorbable silk sutures followed by wound clips. The procedure 

was shown in the fig. 40. 

 

Figure 40: Subcutaneous implantation surgical procedure. 
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Figure 41: The dimension of the implanted modular construct. 

  

Figure 42: (A) Actual modular construct formed by perfusion method.(B) Fused hepatocyte 

capsules. 

9.4.2 Dynamic Contrast Enhanced Magnetic Resonance Imaging: 

MR Imaging: 

Magnetic resonance imaging (MRI) is a versatile diagnostic technique that can be used non-

invasively, to investigate morphological, metabolic and functional information of any organ or 

tissue in animal or human body. Here we employ MRI to study the developing vasculature in our 
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implanted modular scaffolds by administering a contrast agent. MR imaging is able to exploit the 

plasma flow, blood vessel morphology and distribution, and flow heterogeneity to investigate 

neovascularization in an implanted tissue scaffold. Neovascularization is a critical physiological 

process that determines the success of an implanted engineered tissue. Among the currently 

available noninvasive tools including computed tomography (CT), magnetic resonance imaging 

(MRI), positron emission tomography (PET) and single photon emission computed tomography 

(SPECT), MRI is probably the most potent method to characterize both morphological and 

functional aspects of vascular system (Oostendorp, Post et al. 2009). In addition, MRI is a more 

sensitive tool to investigate the growth of small blood vessels at various spatial-temporal scales 

(Padhani 2002).  

Dynamic contrast-enhanced MRI:  

Out of the different MRI techniques, the contrast enhanced methods are generally faster and show 

higher target-to-background contrast (Oostendorp, Post et al. 2009), which is particularly useful 

for imaging neovascularization. During the contrast-enhanced MRI, the blood plasma signal is 

selectively enhanced using a gadolinium chelate that shortens its T1 relaxation time (Prince 1994, 

Prince, Narasimham et al. 1995). Using dynamic contrast- enhanced MRI technique, physiological 

information of the implanted tissue including blood flow, blood vessel permeability and surface 

area of the capillaries can be obtained using T1 weighted MRI (Prince 1994). The kinetic profile 

of the gadolinium chelate is determined mainly by the following factors: active transport, blood 

plasma perfusion and passive diffusion out of the blood vessels into the extravascular-extracellular 

space (Prince 1994).  

Three group of mice were imaged post-implantation at time points of 1, 2, and 3 weeks to 

evaluate the levels of vascularization and blood perfusion in the constructs. The scan was taken 
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one at a time and the animal was anesthetized by administration of inhalant isoflurane and kept 

warm on a warming pad. Once anesthetized, a 24G catheter with 27G needle was inserted into the 

tail vein (intravenous-IV) to administer the tracer intravenously.  The tracer was also administered 

by intraperitoneal (IP) injection in many cases. After background imaging data are acquired, the 

tracer- Gd-DTPA dimeglumine (Magnevist) was administered as previously described (Orth, 

Bankson et al. 2007), while the animal was in the magnet 7T- MR scanner (Bruker BioSpin) and 

MRI data was acquired. The pharmaceutical grade tracer, Magnevist Injection, was supplied as 

sterile, 0.5 mmol/ml solution and was diluted with sterile saline for administration. The total 

anesthesia time was less than 1 hour per week. Since Gd-DTPA was exclusively eliminated in the 

urine with 90% clearance within 24 hours, there was no adverse effects on the animal after repeated 

injections on a weekly basis. To keep the tracer perfusion consistent between the IP and IV 

procedures, the concentration and the time delay for the scan was optimized using MRI images 

obtained with the first 2 to 4 animals.  For IV procedures 0.3 mmol/kg of the tracer was 

administered and scans were obtained immediately. For IP procedure the dosage was doubled and 

the scans were obtained after 5 min delay. The following are the parameters of the MRI scans 

taken in 7T magnet: Repetition Time: 22s, Echo Time: 3.53s, Flip Angle: 30, Pixel Bandwidth: 

260, Pixel Spacing: 0.125mm/0.125mm, Slice Thickness: 0.130mm. 
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Figure 43: MRI scan. Stacked sagittal scans of the implanted constructs. 

The Gd-DTPA concentration was calculated from the longitudinal relaxation time T1: 
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c(t) is the tissue concentration of d-DTPA as a function of time 

α = Longitudinal relativity [3-5 1/(smmol/L)] 

T1(0) = Pre T1 value (ms) 

T1(t) = Post Gd-DTPA (ms)  

TE is the echo time 

TR is the repetition times = 22ms 
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s(0) = Pre T1-weighted value 

s(t) = Post T1-weighted value 

TR = 2200 ms, 

Post Gd-DTPA T1 = 2 s (Longitudinal relaxation time) 

9.5 Results  

9.5.1 Vascularization and blood perfusion in the constructs 

 The amount of blood perfusion in terms of blood volume per tissue volume was calculated 

by measuring the tracer intensity in the implanted tissue. To measure the intensity, SPIN software 

was used to analyze the obtained MRI scans. The implanted tissue in the images was first selected 

and the total intensity per unit pixel of that selected area was compared to that of the different 

groups after subtracting the pre scan values. An increase in the total blood volume to tissue volume 

was notice over the seven day time interval in all the test groups as shown in image below. 

Moreover, the total volume of the implanted construct also reduced over time due to the 

biodegradation of the materials by the host. At week-3 most of the material in the construct was 

degraded and the implant look completely vascularized as evident from the higher intensity of the 

tracer throughout the construct. 

9.5.2 Effects of endothelialization on vascularization  

Two groups of animals were included in our study to validate the rapid vascularization of 

our modular constructs. The first group received implants made out of empty capsules with no 

endothelial cells on the outside capsule wall. The second group of animals were implanted with 

implants made out of empty capsules with endothelial cells on the outside capsule wall. The 
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perfusion intensity of the tracer was compared between the groups. It was found that the implants 

with HUVECs on the outside wall showed higher level of enhancement by week-2 compares to 

that of the implants without the HUVECs as shown in the figure 45-47. Hence, the HUVECs 

seeded on the outside wall accelerated the process of neovascularization, thus supporting our 

central hypothesis.  
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Figure 44: MRI scan. Stacked sagittal scans of the implanted constructs. Empty capsule 

constructs with and without HUVECs. 

 

Figure 45: Percent increase in Gd-DTPA signal intensity. Increase in tracer concentration 

showing the effects of endothelialization on vascularization. 

The concentration of Gd-DTPA in the extracellular-extravascular space after 5-8 min after 

administering intraperitoneally was calculated using the formula detailed in the previous section. 

The longitudinal relativity (α) for the our system was 5/(mmol/L/s) and the repetition time (TR) 

for the MRI scans was 22ms. The average signal intensity in the implanted tissue was calculated 

using SPIN image analysis. Figure 45 shows the percent increase in signal intensity post Gd-

DTPA, in constructs seeded with and without endothelial cells on the outside. The results shows 

that the endothelialization of the capsules accelerated the vascularization of our modular 

constructs. Significant increase in the vascularization is seen at all-time points and a three fold 

increase is seen at week-2. This rapid vascularization thru endothelialization of the modular 
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construct can help retain cell viability and functionality of the parenchymal cells encapsulated in 

the capsules. This is crucial to improve the overall success rate of the implanted tissue as most of 

the implant necrosis happens during the first two weeks that ultimately leads to poor outcomes.  

 

Figure 46: MRI scan. Stacked sagittal scans of the implanted constructs. SMC seeded capsule 

constructs with and without HUVECs. 
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Similar results were also seen when SMCs were encapsulated inside the capsules as shown in 

figure 46. Hence, the HUVECs seeded on the outside wall accelerated the process of 

neovascularization, thus supporting our central hypothesis. The The Gd-DTPA concentration was 

calculated using the above mentioned derivations and found to be 0.008 mmol/lit/min in the 

constructs with endothelial cells on the outside after two weeks and o.031mmol/lit/min in the 

constructs without the endothelial cells on the outside after two weeks post implantation. 

9.6 Summary and Discussion 

This is an important step in fabricating advanced tissue constructs as our technology can 

actually accelerate the vascularization process during the initial phases on the implantation in 

which the implant is more vulnerable to diffusion limitation and subsequent necrosis of the tissue. 

We have shown that our embedding a network of inter-connected endothelial cell lined channels 

in tissue constructs can accelerate the process of vascularization. The next step is to use a 

parenchymal cells such as smooth muscle cells or hepatocytes inside the capsules and test their 

performance enhancement in our modular scaffolds. In summary, our modular approach has the 

potential to allow rapid assembly of tissue constructs with clinically significant cell densities, 

uniform cell distribution, and endothelialized, perfusable channels. The total blood volume and the 

total surface area of the microvasculature in the implanted tissue can be determined from the 

concentration profiles of the Gd-DTPA calculated using T1 weighted images and T1 maps, which 

encompass our future direction. 
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CHAPTER:	10	

Discussion and Future directions	

 Modularity is a phenomenon widely observed in nature, which enables biological systems 

to achieve precise control over organization and function in very compact spaces. The modularity 

of the kidney and its component nephrons are excellent examples of this concept. Adopting a 

similar approach in engineered organs has a number of advantages. The scalability of the modular 

strategy enables rapid fabrication of tissue constructs with greater control over their architecture. 

The major design challenges of a modular tissue construct include: limiting mass transfer 

distances, achieving high, tissue-like cell densities, and the ability to form interconnected, 

vascularizable channels. The GAG-based microcapsules described here allow efficient mass 

transfer, which is evident from the tissue-density cultures that were maintained for up to 45 days 

under static culture conditions. The diameter of the capsules can be easily controlled between 0.3 

and 2.0 mm, and smaller diameters are achievable using more sophisticated droplet formation 

methods such as microfluidics. Capsule diameter imposes a natural upper limit on the maximum 

diffusion distances. The capsule system, in particular the hyaluronan-based capsules, supports 

direct encapsulation of cells at high, in vivo-like densities. In addition, the cell-contractable 

capsule formulations provide an additional mechanism for modulating cell density within either 

the capsules or the fused construct. Under random packing conditions, capsule fusion produced 

3D structures with significant void space available for direct perfusion, accessory cell culture, or 

vascularization. The dimensions and architecture of the intercapsular voids can also be modulated 

by incorporating additional biomaterial components into fused capsule structures. Such accessory 

components include fibers, beads, films, tubes, etc. made from chitosan, chitosan-GAG 

complexes, or other degradable materials. The materials used in our modules are fully degradable, 
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and previous implantation results with similar materials indicate that in contrast to pure chitosan 

(VandeVord, Matthew et al. 2002), chitosan-GAG complexes (Chupa, Foster et al. 2000) degrade 

rapidly in vivo and stimulate rapid and extensive neovascularization due to GAG-mediated effects 

(West and Kumar 1989, Norrby 2006, Stringer 2006, Fuster and Wang 2010, Gaffney, Matou-

Nasri et al. 2010). The high density trophoblast cultures were primarily intended to demonstrate 

the potential of the microcapsules with a highly proliferative human cell type.  However, these 

cultures also provided direct evidence of both the degradability of the GAG-chitosan materials, 

and the ability of cells to invade the capsule wall. The trophoblast cell line maintains some 

characteristics of human trophoblasts, in particular the ability to tolerate hypoxic conditions and 

to invade tissue rapidly. Both characteristics are presumably related to its original, placenta-

formation function (Chang and Vivian Yang 2013) and may be mediated by focal expression of 

MMPs, GAG lyases or other matrix degrading enzymes. Wall invasion and cell escape in these 

trophoblast cultures was evident after week 2 of culture and was clearly captured in histological 

sections (Figure 3C). This phenomenon strongly suggests that implanted capsules would present 

only a temporary barrier to integration of encapsulated cells with adjacent tissues. Coupled with 

the known pro-angiogenic effects of GAG-based materials (Black, Hudon et al. 1999, Ferretti, 

Boschi et al. 2003, Mathieu, Chevrier et al. 2013), these results further suggest that rapid 

vascularization is a likely outcome after transplantation of capsule-based constructs  

 Beyond modular assembly, the ability to incorporate clinically significant cell numbers 

into an implantable construct of feasible size is an additional challenge. We have shown that cells 

and matrix can be efficiently packed inside capsules of a non-diffusion limited size (Figures 8, 13). 

Our liver organoid prototype had a cell density of 50x106 cells/cm3 (Figure 13A). This is 40-60% 

of the hepatocyte cell density of liver tissue. From a practical standpoint, the cell densities achieved 
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in our systems are adequate for liver tissue engineering, as it has been demonstrated that with good 

blood chemistry, ~10% of total liver mass can support survival in rats (Arkadopoulos, Lilja et al. 

1998, Kobayashi, Miyazaki et al. 2000) and humans (Bilir, Guinette et al. 2000). It should be noted 

that maintaining high cell densities inside capsules presents particular diffusion challenges in the 

case of highly metabolic cells such as primary hepatocytes. Thus, we have also shown that the cell 

density can be scaled down to compensate for such high metabolic requirements (Figure 13 C-D). 

In principle, diffusion challenges can be minimized by limiting the maximum capsule diameter to 

ensure an adequate supply of nutrients and oxygen to all regions of the cell mass. Diffusion inside 

capsules can be further modulated by controlling the extent of cell distribution and aggregation.  

In particular, co-encapsulating hydrogel components (e.g. collagen gels) or microcarriers provides 

a mechanism for tuning the interior microenvironment as well as the architecture of the cell mass. 

Such hydrogel materials can benignly interfere or directly compete with large scale cell 

aggregation, and thus serve to promote formation of multiple smaller or looser cell aggregates.  

 The encapsulation method also allows incorporation of microcarriers of various 

biomaterials. As with hydrogels, these microcarriers can produce additional adhesion ligand 

signaling, organizational barriers or mechanical enhancement. Our results show that gelatin coated 

dextran microcarriers significantly enhanced the growth and viability of encapsulated smooth 

muscle cells. These and other cell-adhesive microparticles can also be used to alter the physical 

properties of the fused capsule construct. It should also be noted that inclusion of microcarriers 

resulted in capsules with reduced osmotic swelling and substantially reduced internal volumes. 

This was particularly noteworthy in the case of CSA/CMC capsules which swelled more than HA 

capsules. We postulate that the increased swelling in the CSA/CMC system was due to higher 

interior osmotic pressures resulting from combined effects of a higher mass concentration, and 
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lower molecular mass of the interior polymer solution compared to HA capsules. Inclusion of a 

high volume fraction of microcarriers within a capsule-forming CSA/CMC droplet reduced both 

the volume of CSA/CMC solution inside the capsule and also the residual concentration of this 

solution after capsule membrane formation. This lower final concentration (caused by 

incorporation of polymer into the capsule membrane) produced a lower osmotic pressure and 

resulted in contraction of the capsule membrane around the cell+microcarrier mass. In general, the 

inclusion of microparticles provides a wide range of options for tuning the cellular organization 

and overall mechanical properties of modular constructs. 

 Fused capsule modules yielded 3D constructs with inter-capsular spaces that are perfusable 

in vitro and vascularizable in vivo. The urea and albumin synthesis rates of the perfused cultures 

indicate that mass transfer rates were sufficient to maintain the encapsulated hepatocytes in our 

modular constructs. In addition, the interconnected endothelilized channels may provide a 

foundation for a vascular network and thereby accelerate the process of neovascularization by 

anastomosing with the host vasculature post-implantation. At the very least, intercapsular 

endothelial cells are likely to participate in vessel formation between fused capsules. However, the 

kinetics of this process, and the relative degrees of transplanted vs. host cell organization in the 

final structure remain to be characterized through animal studies.  

 Our results also suggest that the capsule membrane can facilitate paracrine signaling as 

seen by the increase in SMC proliferation during coculture with endothelial cells. This suggests 

that various other interacting cell types can be cultured in this modular system with a degree of 

material-based control over cell organization while still allowing substantial paracrine signaling. 

Several coculture systems have previously been shown to improve morphology and function of 

engineered tissues including liver (Parekkadan, van Poll et al. 2007, Yagi, Parekkadan et al. 2009, 
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Kasuya, Sudo et al. 2011, Kim, Ohashi et al. 2012, No da, Lee et al. 2012), bone (Sun, Qu et al. 

2007, Tao, Sun et al. 2009, Steiner, Lampert et al. 2012{Tao, 2009 #415) and cartilage (Bian, Zhai 

et al. 2011, Qing, Wei-ding et al. 2011, Meretoja, Dahlin et al. 2013). Our results suggest that 

similar trophic effects can be achieved with ease in capsule-based modular scaffolds, with added 

the added benefit of control over cell arrangement and distribution.  

 Unlike traditional scaffolds, porosity can be either maintained evenly throughout the 

modular capsule scaffolds or different layers with different capsule sizes and hence different 

porosity can be easily implemented. GAG-chitosan surfaces can support cell adhesion and 

proliferation, partly due to GAG-mediated binding of matrix proteins and growth factors (Chupa, 

Foster et al. 2000, Uygun, Stojsih et al. 2009). External cell adhesion can further be enhanced by 

directly incorporating cell-adhesive proteins such as collagen into the capsule wall by either 

blending with the polycationic solution or direct application to external capsule surfaces.  

 In conclusion, we have demonstrated the formation and use of GAG-based microcapsules 

to generate a variety of tunable, intracapsular microenvironments. These capsules have been 

shown suitable for fabrication of porous, 3D constructs that have the potential to mimic native 

tissue architecture with high cell densities, vascular and parenchymal cell types, and perfusable, 

endothelium-lined channels. This capsule-based modular tissue assembly approach is a promising 

strategy that provides a wide range of options for the efficient assembly of three-dimensional, 

engineered tissues.  
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Tissue engineering aims to create functional biological tissues to treat diseases and 

damaged organs. A primary goal is to fabricate a 3D construct that can promote cell-cell 

interaction, extra cellular matrix (ECM) deposition and tissue level organization. Accomplishing 

these prerequisites with the currently available conventional scaffolds and fabrication techniques 

still remains a challenge. To reproduce the full functionality there is a need to engineer tissue 

constructs that mimic the innate architecture and complexity of natural tissues. The limited ability 

to vascularize and perfuse thick, cell-laden tissue constructs has hindered efforts to engineer 

complex tissues and organs, including liver, heart and kidney. The emerging field of modular tissue 

engineering aims to address this limitation by fabricating constructs from the bottom up, with the 

objective of recreating native tissue architecture and promoting extensive vascularization.  

Here, we report the elements of a simple yet efficient method for fabricating vascularized 

tissue constructs by fusing biodegradable microcapsules with tunable interior environments. 

Parenchymal cells of various types, (i.e. trophoblasts, vascular smooth muscle cells, hepatocytes) 

were suspended in glycosaminoglycan (GAG) solutions (4%/1.5% chondroitin 
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sulfate/carboxymethyl cellulose, or 1.5 wt% hyaluronan) and encapsulated by forming chitosan-

GAG polyelectrolyte complex membranes around droplets of the cell suspension. The interior 

capsule environment could be further tuned by blending collagen with or suspending microcarriers 

in the GAG solution. These capsule modules were seeded externally with vascular endothelial cells 

(VEC), and subsequently fused into tissue constructs possessing VEC-lined, inter-capsule 

channels. The microcapsules supported high density growth achieving clinically significant cell 

densities. Fusion of the endothelialized capsules generated 3D constructs with an embedded 

network of interconnected channels that enabled long-term perfusion in-vitro and accelerated 

neovascularization in-vivo. A prototype, engineered liver tissue, formed by fusion of hepatocyte-

containing capsules exhibited urea synthesis rates and albumin synthesis rates comparable to 

standard collagen sandwich hepatocyte cultures. Our modular approach has the potential to allow 

rapid assembly of liver constructs with clinically significant cell densities, uniform cell 

distribution, and endothelialized, perfusable channels. 



121 

 

AUTOBIOGRAPHICAL	STATEMENT	
Academic	Background:	

 Master	of	Science	in	Biomedical	Engineering	,	Fall	2007	–	09	 	 GPA	3.9/4.0	

Wayne	State	University,	Detroit,	MI				

Advisor:	Professor	Howard	W.T.	Matthew				

 Bachelor	of	Technology	in	Biotechnology,	2003	–	07	 	 	 80%		

Bharathidasan	University,	Trichy,	India		 	 	 	 	 (1st	class/Distinction)	

	

Honors/Awards:	

 Thomas	C.	Rumble	Fellowship,	2011‐2012,	Wayne	State	University,	USA	

 Travel	Award:	2010,	2012	:	Biomedical	Engineering	National	Society	(BMES),	USA	

 Travel	Award:	2010,‐13	:	Wayne	State	University,	Detroit,	Michigan,	USA		

	
Publications	in	Peer	Reviewed	Journals:	
1. A glycosaminoglycan based, modular tissue scaffold system for rapid assembly of perfusable, 

high cell density, engineered tissues, T‐Annamalai	R, Armant & Matthew, PLoS One, 2014. 

9(1):p. e84287	

	

Publications	to	be	submitted:	

2. Design	and	characterization	of	dynamic	environment	imposed	to	a	three‐dimensional	engineered	

modular	liver	orgonoid	in	a	perfusion	bioreactor	system.	T‐Annamalai,	R.	and	Matthew,	H.W.T.,		

To	be	Submitted	to	“PLoS	ONE”	

3. Role	 of	 Glycosaminoglycans	 in	 Stem	 Cell	 Maintenance,	 Expansion	 and	 Differentiation.	 T‐

Annamalai,	R.	and	Matthew,	H.W.T.,		submitted	to	“ISRN	Biomedical	Engineering”	

	

National	Affiliations:	
	

 Biomedical	Engineering	Society	(BMES)	

 Society	for	Biomaterials	(SFB)	

 American	Institute	of	Chemical	Engineers	(AIChE)	

 Tissue	Engineering	and	Regenerative	Medicine	(TERMIS)	


	Wayne State University
	1-1-2014
	A Bottom-Up Assembly Of Vascularized Bioartificial Constructs Using Ecm Based Microscale Modules
	Ramkumar Tiruvannamalai Annamalai
	Recommended Citation


	Microsoft Word - Thesis Dissertation Final (05-20-14)

